当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Origin and Control of Polyacrylonitrile Alignments on Carbon Nanotubes and Graphene Nanoribbons
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2018-01-25 , DOI: 10.1002/adfm.201706970 Juho Lee 1 , Ji Il Choi 1 , Art E. Cho 2 , Satish Kumar 3 , Seung Soon Jang 3 , Yong-Hoon Kim 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2018-01-25 , DOI: 10.1002/adfm.201706970 Juho Lee 1 , Ji Il Choi 1 , Art E. Cho 2 , Satish Kumar 3 , Seung Soon Jang 3 , Yong-Hoon Kim 1
Affiliation
While one of the most promising applications of carbon nanotubes (CNTs) is to enhance polymer orientation and crystallization to achieve advanced carbon fibers, the successful realization of this goal has been hindered by the insufficient atomistic understanding of polymer–CNT interfaces. Herein, polyacrylonitrile (PAN)‐CNT hybrid structures are theoretically studied as a representative example of polymer–CNT composites. Based on density functional theory calculations, it is first found that the relative orientation of polar PAN nitrile groups with respect to the CNT surface is the key factor that determines the PAN–CNT interface energetics and the lying‐down PAN configurations are much more preferable than their standing‐up counterparts. The CNT curvature is identified as another important factor, giving the largest binding energy in the zero‐curvature graphene limit. Charge transfer analysis explains the unique tendency of linear PAN alignments on the CNT surface and the possibility of ordered PAN–PAN assembly. Next, performing large‐scale molecular dynamics simulations, it is shown that the desirable linear PAN–CNT alignment can be achieved even for relatively large initial misorientations and further demonstrate that graphene nanoribbons are a promising carbon nano‐reinforcement candidate. The microscopic understanding accumulated in this study will provide design guidelines for the development of next‐generation carbon nanofibers.
中文翻译:
碳纳米管和石墨烯纳米带上聚丙烯腈排列的起源和控制
尽管碳纳米管(CNT)的最有希望的应用之一是增强聚合物的取向和结晶以实现先进的碳纤维,但对聚合物-CNT界面的原子性了解不足,阻碍了该目标的成功实现。在本文中,对聚丙烯腈(PAN)-CNT杂化结构进行了理论研究,以作为聚合物-CNT复合材料的代表。根据密度泛函理论计算,首先发现极性PAN腈基相对于CNT表面的相对取向是决定PAN-CNT界面能量的关键因素,而卧式PAN构型比碳纳米管更可取他们的站立者。CNT曲率被确定为另一个重要因素,在零曲率石墨烯极限中给出最大的结合能。电荷转移分析解释了CNT表面上线性PAN排列的独特趋势以及有序PAN-PAN组装的可能性。接下来,进行大规模的分子动力学模拟,结果表明,即使相对较大的初始取向差,也可以实现理想的线性PAN-CNT排列,并进一步证明了石墨烯纳米带是有前途的碳纳米增强候选材料。这项研究中积累的微观理解将为下一代碳纳米纤维的开发提供设计指导。通过进行大规模的分子动力学模拟,结果表明,即使初始取向相对较大,也可以实现理想的线性PAN-CNT排列,并且进一步证明了石墨烯纳米带是有希望的碳纳米增强候选材料。这项研究中积累的微观理解将为下一代碳纳米纤维的开发提供设计指导。通过进行大规模的分子动力学模拟,结果表明,即使初始取向相对较大,也可以实现理想的线性PAN-CNT排列,并且进一步证明了石墨烯纳米带是有希望的碳纳米增强候选材料。这项研究中积累的微观理解将为下一代碳纳米纤维的开发提供设计指导。
更新日期:2018-01-25
中文翻译:
碳纳米管和石墨烯纳米带上聚丙烯腈排列的起源和控制
尽管碳纳米管(CNT)的最有希望的应用之一是增强聚合物的取向和结晶以实现先进的碳纤维,但对聚合物-CNT界面的原子性了解不足,阻碍了该目标的成功实现。在本文中,对聚丙烯腈(PAN)-CNT杂化结构进行了理论研究,以作为聚合物-CNT复合材料的代表。根据密度泛函理论计算,首先发现极性PAN腈基相对于CNT表面的相对取向是决定PAN-CNT界面能量的关键因素,而卧式PAN构型比碳纳米管更可取他们的站立者。CNT曲率被确定为另一个重要因素,在零曲率石墨烯极限中给出最大的结合能。电荷转移分析解释了CNT表面上线性PAN排列的独特趋势以及有序PAN-PAN组装的可能性。接下来,进行大规模的分子动力学模拟,结果表明,即使相对较大的初始取向差,也可以实现理想的线性PAN-CNT排列,并进一步证明了石墨烯纳米带是有前途的碳纳米增强候选材料。这项研究中积累的微观理解将为下一代碳纳米纤维的开发提供设计指导。通过进行大规模的分子动力学模拟,结果表明,即使初始取向相对较大,也可以实现理想的线性PAN-CNT排列,并且进一步证明了石墨烯纳米带是有希望的碳纳米增强候选材料。这项研究中积累的微观理解将为下一代碳纳米纤维的开发提供设计指导。通过进行大规模的分子动力学模拟,结果表明,即使初始取向相对较大,也可以实现理想的线性PAN-CNT排列,并且进一步证明了石墨烯纳米带是有希望的碳纳米增强候选材料。这项研究中积累的微观理解将为下一代碳纳米纤维的开发提供设计指导。