当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silicon Carbide Nanoparticles as an Effective Bioadhesive to Bond Collagen Containing Composite Gel Layers for Tissue Engineering Applications
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2018-01-23 , DOI: 10.1002/adhm.201701385
Rana Attalla 1 , Celine S. N. Ling 1 , Ponnambalam Ravi Selvaganapathy 1, 2
Affiliation  

Additive manufacturing via layer‐by‐layer adhesive bonding holds much promise for scalable manufacturing of tissue‐like constructs, specifically scaffolds with integrated vascular networks for tissue engineering applications. However, there remains a lack of effective adhesives capable of composite layer fusion without affecting the integrity of patterned features. Here, the use of silicon carbide is introduced as an effective adhesive to achieve strong bonding (0.39 ± 0.03 kPa) between hybrid hydrogel films composed of alginate and collagen. The techniques have allowed us to fabricate multilayered, heterogeneous constructs with embedded high‐resolution microchannels (150 µm–1 mm) that are precisely interspaced (500–600 µm). Hydrogel layers are effectively bonded with silicon carbide nanoparticles without blocking the hollow microchannels and high cell viability (90.61 ± 3.28%) is maintained within the scaffold. Nanosilica is also tested and found to cause clogging of smaller microchannels when used for interlayer bonding, but is successfully used to attach synthetic polymers (e.g., Tygon) to the hydrogels (32.5 ± 2.12 mN bond strength). This allows us to form inlet and outlet interconnections to the gel constructs. This ability to integrate hollow channel networks into bulk soft material structures for perfusion can be useful in 3D tissue engineering applications.

中文翻译:

碳化硅纳米颗粒作为一种有效的生物粘合剂,可以粘结包含胶原蛋白的复合凝胶层,用于组织工程应用

通过逐层粘合剂粘结进行增材制造对组织样结构的可扩展制造具有广阔的前景,特别是用于组织工程应用的具有集成血管网络的支架。然而,仍然缺乏能够复合层融合而不影响图案化特征完整性的有效粘合剂。在这里,引入了碳化硅作为一种有效的粘合剂,以在由藻酸盐和胶原蛋白组成的混合水凝胶薄膜之间实现牢固的粘合(0.39±0.03 kPa)。这些技术使我们能够制造出多层,异质结构,这些结构具有嵌入的高分辨率微通道(150 µm–1 mm),这些通道之间精确间隔(500–600 µm)。水凝胶层与碳化硅纳米颗粒有效结合,而不会阻塞空心微通道,并且在支架内保持了高细胞活力(90.61±3.28%)。纳米二氧化硅也经过测试,发现当用于层间键合时会引起较小的微通道堵塞,但已成功用于将合成聚合物(例如Tygon)连接至水凝胶(32.5±2.12 mN粘合强度)。这使我们能够形成凝胶构造的入口和出口互连。将空心通道网络集成到块状软材料结构中进行灌注的这种能力在3D组织工程应用中非常有用。但已成功用于将合成聚合物(例如Tygon)连接至水凝胶(32.5±2.12 mN的结合强度)。这使我们能够形成凝胶构造的入口和出口互连。将空心通道网络集成到块状软材料结构中进行灌注的这种能力在3D组织工程应用中很有用。但已成功用于将合成聚合物(例如Tygon)连接至水凝胶(32.5±2.12 mN的结合强度)。这使我们能够形成凝胶构造的入口和出口互连。将空心通道网络集成到块状软材料结构中进行灌注的这种能力在3D组织工程应用中非常有用。
更新日期:2018-01-23
down
wechat
bug