当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO2 Electroreduction
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-08 , DOI: 10.1002/adma.201705872 Rong He 1 , An Zhang 1 , Yilun Ding 1 , Taoyi Kong 1 , Qing Xiao 1 , Hongliang Li 1 , Yan Liu 1 , Jie Zeng 1
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-08 , DOI: 10.1002/adma.201705872 Rong He 1 , An Zhang 1 , Yilun Ding 1 , Taoyi Kong 1 , Qing Xiao 1 , Hongliang Li 1 , Yan Liu 1 , Jie Zeng 1
Affiliation
Electroreduction of CO2 is a sustainable approach to produce syngas with controllable ratios, which are required as specific reactants for the optimization of different industrial processes. However, it is challenging to achieve tunable syngas production with a wide ratio of CO/H2, while maintaining a high current density. Herein, cadmium sulfoselenide (CdSxSe1−x) alloyed nanorods are developed, which enable the widest range of syngas proportions ever reported at the current density above 10 mA cm−2 in CO2 electroreduction. Among CdSxSe1−x nanorods, CdS nanorods exhibit the highest Faradaic efficiency (FE) of 81% for CO production with a current density of 27.1 mA cm−2 at −1.2 V vs. reversible hydrogen electrode. With the increase of Se content in CdSxSe1−x nanorods, the FE for H2 production increases. At −1.2 V vs. RHE, the ratios of CO/H2 in products vary from 4:1 to 1:4 on CdSxSe1−x nanorods (x from 1 to 0). Notably, all proportions of syngas are achieved with current density higher than ≈25 mA cm−2. Mechanistic study reveals that the increased Se content in CdSxSe1−x nanorods strengthens the binding of H atoms, resulting in the increased coverage of H* and thus the enhanced selectivity for H2 production in CO2 electroreduction.
中文翻译:
在CO2电还原中,在亚硒化镉纳米棒上以高电流密度实现最大范围的合成气比例
CO 2的电还原是生产具有可控比例的合成气的可持续方法,这是特定的反应物,可用于优化不同的工业工艺。然而,在保持高电流密度的同时,以宽的CO / H 2比例实现可调节的合成气生产具有挑战性。在此,开发了亚硒化镉(CdS x Se 1- x)合金化的纳米棒,该棒在电流密度大于10 mA cm -2的CO 2电解还原中,实现了有史以来最广泛的合成气比例范围。在CdS x Se 1- x中纳米棒,CdS纳米棒与可逆氢电极相比,在-1.2 V时的电流密度为27.1 mA cm -2,显示出CO产生的最高法拉第效率(FE)为81%。随着CdS x Se 1- x纳米棒中Se含量的增加,用于H 2产生的FE增加。在−1.2 V相对于RHE的情况下,CdS x Se 1- x纳米棒上的产品中CO / H 2的比率从4:1到1:4不等(x从1到0)。值得注意的是,所有合成气的比例均以高于≈25mA cm -2的电流密度实现。机理研究表明,CdS x Se 1−中的硒含量增加x纳米棒增强了H原子的结合,从而增加了H *的覆盖率,从而提高了CO 2电还原中H 2生成的选择性。
更新日期:2018-01-08
中文翻译:
在CO2电还原中,在亚硒化镉纳米棒上以高电流密度实现最大范围的合成气比例
CO 2的电还原是生产具有可控比例的合成气的可持续方法,这是特定的反应物,可用于优化不同的工业工艺。然而,在保持高电流密度的同时,以宽的CO / H 2比例实现可调节的合成气生产具有挑战性。在此,开发了亚硒化镉(CdS x Se 1- x)合金化的纳米棒,该棒在电流密度大于10 mA cm -2的CO 2电解还原中,实现了有史以来最广泛的合成气比例范围。在CdS x Se 1- x中纳米棒,CdS纳米棒与可逆氢电极相比,在-1.2 V时的电流密度为27.1 mA cm -2,显示出CO产生的最高法拉第效率(FE)为81%。随着CdS x Se 1- x纳米棒中Se含量的增加,用于H 2产生的FE增加。在−1.2 V相对于RHE的情况下,CdS x Se 1- x纳米棒上的产品中CO / H 2的比率从4:1到1:4不等(x从1到0)。值得注意的是,所有合成气的比例均以高于≈25mA cm -2的电流密度实现。机理研究表明,CdS x Se 1−中的硒含量增加x纳米棒增强了H原子的结合,从而增加了H *的覆盖率,从而提高了CO 2电还原中H 2生成的选择性。