当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Broadband MoS2 Field‐Effect Phototransistors: Ultrasensitive Visible‐Light Photoresponse and Negative Infrared Photoresponse
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-08 , DOI: 10.1002/adma.201705880 Jing-Yuan Wu 1, 2, 3, 4 , Young Tea Chun 2 , Shunpu Li 2 , Tong Zhang 1, 3, 4 , Junzhan Wang 5 , Pawan Kumar Shrestha 2 , Daping Chu 2
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-08 , DOI: 10.1002/adma.201705880 Jing-Yuan Wu 1, 2, 3, 4 , Young Tea Chun 2 , Shunpu Li 2 , Tong Zhang 1, 3, 4 , Junzhan Wang 5 , Pawan Kumar Shrestha 2 , Daping Chu 2
Affiliation
Inverse photoresponse is discovered from phototransistors based on molybdenum disulfide (MoS2). The devices are capable of detecting photons with energy below the bandgap of MoS2. Under the illumination of near‐infrared (NIR) light at 980 and 1550 nm, negative photoresponses with short response time (50 ms) are observed for the first time. Upon visible‐light illumination, the phototransistors exhibit positive photoresponse with ultrahigh responsivity on the order of 104–105 A W−1 owing to the photogating effect and charge trapping mechanism. Besides, the phototransistors can detect a weak visible‐light signal with effective optical power as low as 17 picowatts (pW). A thermally induced photoresponse mechanism, the bolometric effect, is proposed as the cause of the negative photocurrent in the NIR regime. The thermal energy of the NIR radiation is transferred to the MoS2 crystal lattice, inducing lattice heating and resistance increase. This model is experimentally confirmed by low‐temperature electrical measurements. The bolometric coefficient calculated from the measured transport current change with temperature is −33 nA K−1. These findings offer a new approach to develop sub‐bandgap photodetectors and other novel optoelectronic devices based on 2D layered materials.
中文翻译:
宽带MoS2场效应光电晶体管:超灵敏可见光光电响应和负红外光电响应
从基于二硫化钼(MoS 2)的光电晶体管中发现了逆光响应。该设备能够检测能量低于MoS 2带隙的光子。在980和1550 nm的近红外(NIR)光照下,首次观察到响应时间短(50 ms)的负光响应。在可见光照射下,光电晶体管表现出正的光响应,并具有10 4 –10 5 AW -1数量级的超高响应度由于具有光闸效应和电荷俘获机制。此外,光电晶体管可以检测到微弱的可见光信号,其有效光功率低至17皮瓦(pW)。提出了一种热诱导的光响应机制,即辐射热效应,是近红外条件下负光电流的原因。NIR辐射的热能传递到MoS 2晶格,从而引起晶格加热和电阻增加。该模型已通过低温电气测量得到实验证实。根据测得的传输电流随温度的变化计算出的辐射热系数为-33 nA K -1。这些发现为基于2D分层材料的亚带隙光电探测器和其他新型光电器件的开发提供了一种新方法。
更新日期:2018-01-08
中文翻译:
宽带MoS2场效应光电晶体管:超灵敏可见光光电响应和负红外光电响应
从基于二硫化钼(MoS 2)的光电晶体管中发现了逆光响应。该设备能够检测能量低于MoS 2带隙的光子。在980和1550 nm的近红外(NIR)光照下,首次观察到响应时间短(50 ms)的负光响应。在可见光照射下,光电晶体管表现出正的光响应,并具有10 4 –10 5 AW -1数量级的超高响应度由于具有光闸效应和电荷俘获机制。此外,光电晶体管可以检测到微弱的可见光信号,其有效光功率低至17皮瓦(pW)。提出了一种热诱导的光响应机制,即辐射热效应,是近红外条件下负光电流的原因。NIR辐射的热能传递到MoS 2晶格,从而引起晶格加热和电阻增加。该模型已通过低温电气测量得到实验证实。根据测得的传输电流随温度的变化计算出的辐射热系数为-33 nA K -1。这些发现为基于2D分层材料的亚带隙光电探测器和其他新型光电器件的开发提供了一种新方法。