当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-Programmed Desorption for Isotope Separation in Nanoporous Materials
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-01-18 00:00:00 , DOI: 10.1021/acs.jpcc.7b11048
Stephen A. Fitzgerald 1 , Kai Shinbrough 1 , Katharine H. Rigdon 1 , Jesse L. C. Rowsell 2 , Matthew T. Kapelewski 3 , Simon H. Pang 4 , Keith V. Lawler 5 , Paul M. Forster 5
Affiliation  

Hydrogen isotope separation based on differences in quantum zero-point energy was investigated using a novel temperature-programmed desorption approach. Spectra obtained as a function of hydrogen concentration reveal multiple distinct binding sites that correlate with the crystallographic structure of the particular material. In each case, the higher mass isotope desorbs at a characteristic temperature higher than that of the lower mass counterpart. Materials with greater binding energy exhibit a larger difference in characteristic temperature between D2 and H2 but also a broader desorption profile. Simulations based on the standard Polanyi–Wigner equation reveal this broadening to be an intrinsic property present in all higher binding energy materials. As such, the key factor in temperature desorption separation is not the absolute difference in binding energy of the two species but rather the fractional difference.

中文翻译:

纳米多孔材料中同位素分离的程序升温解吸

使用新型的程序升温脱附方法研究了基于量子零点能量差异的氢同位素分离。作为氢浓度的函数而获得的光谱揭示了与特定材料的晶体结构相关的多个不同的结合位点。在每种情况下,较高质量的同位素在比较低质量的同位素高的特征温度下解吸。具有更大结合能的材料在D 2和H 2之间的特征温度表现出较大的差异而且具有更宽的解吸特性。基于标准Polanyi–Wigner方程的模拟表明,这种扩展是所有更高键能材料中固有的特性。因此,温度解吸分离的关键因素不是两种物质结合能的绝对差异,而是分数差异。
更新日期:2018-01-18
down
wechat
bug