当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Templated Formation of P2-type K0.6CoO2 Microspheres for High Reversible Potassium-Ion Batteries
Nano Letters ( IF 9.6 ) Pub Date : 2018-01-04 00:00:00 , DOI: 10.1021/acs.nanolett.7b05324 Tao Deng 1 , Xiulin Fan 1 , Chao Luo 1 , Ji Chen 1 , Long Chen 1 , Singyuk Hou 1 , Nico Eidson 1 , Xiuquan Zhou 1 , Chunsheng Wang 1
Nano Letters ( IF 9.6 ) Pub Date : 2018-01-04 00:00:00 , DOI: 10.1021/acs.nanolett.7b05324 Tao Deng 1 , Xiulin Fan 1 , Chao Luo 1 , Ji Chen 1 , Long Chen 1 , Singyuk Hou 1 , Nico Eidson 1 , Xiuquan Zhou 1 , Chunsheng Wang 1
Affiliation
Layered metal oxides have been widely used as the best cathode materials for commercial lithium-ion batteries and are being intensively explored for sodium-ion batteries. However, their application to potassium-ion batteries (PIBs) is hampered because of the poor cycling stability and low rate capability due to the larger ionic size of K+ than of Li+ or Na+. Herein, a facile self-templated strategy was used to synthesize unique P2-type K0.6CoO2 microspheres that consist of aggregated primary nanoplates as PIB cathodes. The unique K0.6CoO2 microspheres with aggregated structure significantly enhanced the kinetics of the K+ intercalation/deintercation and also minimized the parasitic reactions between the electrolyte and K0.6CoO2. The P2-K0.6CoO2 microspheres demonstrated a high reversible capacity of 82 mAh g–1 at 10 mA g–1, high rate capability of 65 mAh g–1 at 100 mA g–1, and long cycle life (87% capacity retention over 300 cycles). The high reversibility of the P2-K0.6CoO2 full cell paired with a hard carbon anode further demonstrated the feasibility of PIBs. This work not only successfully demonstrates exceptional performance of P2-type K0.6CoO2 cathodes and microspheres K0.6CoO2∥hard carbon full cells, but also provides new insights into the exploration of other layered metal oxides for PIBs.
中文翻译:
用于高可逆钾离子电池的P2型K 0.6 CoO 2微球的自模板形成
层状金属氧化物已被广泛用作商业锂离子电池的最佳阴极材料,并且正被钠离子电池广泛研究。但是,由于K +的离子尺寸大于Li +或Na +的离子尺寸,其循环稳定性差和低倍率性能,阻碍了它们在钾离子电池(PIB)中的应用。在本文中,一种简便的自我模板化策略用于合成独特的P2型K 0.6 CoO 2微球,该微球由聚集的一级纳米板作为PIB阴极组成。具有聚集结构的独特K 0.6 CoO 2微球显着增强了K +的动力学嵌入/脱嵌,并使电解质和K 0.6 CoO 2之间的寄生反应最小化。P2-K 0.6 CoO 2微球在10 mA g –1时具有82 mAh g –1的高可逆容量,在100 mA g –1时具有65 mAh g –1的高倍率容量,并且循环寿命长(容量为87%保留超过300个周期)。P2-K 0.6 CoO 2全电池与硬碳阳极配对的高可逆性进一步证明了PIB的可行性。这项工作不仅成功地证明了P2型K 0.6 CoO 2的出色性能阴极和微球体ķ 0.6的CoO 2 ∥hard碳全电池,而且还提供了新的见解为的PIB其它层状金属氧化物的探索。
更新日期:2018-01-04
中文翻译:
用于高可逆钾离子电池的P2型K 0.6 CoO 2微球的自模板形成
层状金属氧化物已被广泛用作商业锂离子电池的最佳阴极材料,并且正被钠离子电池广泛研究。但是,由于K +的离子尺寸大于Li +或Na +的离子尺寸,其循环稳定性差和低倍率性能,阻碍了它们在钾离子电池(PIB)中的应用。在本文中,一种简便的自我模板化策略用于合成独特的P2型K 0.6 CoO 2微球,该微球由聚集的一级纳米板作为PIB阴极组成。具有聚集结构的独特K 0.6 CoO 2微球显着增强了K +的动力学嵌入/脱嵌,并使电解质和K 0.6 CoO 2之间的寄生反应最小化。P2-K 0.6 CoO 2微球在10 mA g –1时具有82 mAh g –1的高可逆容量,在100 mA g –1时具有65 mAh g –1的高倍率容量,并且循环寿命长(容量为87%保留超过300个周期)。P2-K 0.6 CoO 2全电池与硬碳阳极配对的高可逆性进一步证明了PIB的可行性。这项工作不仅成功地证明了P2型K 0.6 CoO 2的出色性能阴极和微球体ķ 0.6的CoO 2 ∥hard碳全电池,而且还提供了新的见解为的PIB其它层状金属氧化物的探索。