当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for High‐Performance Photoelectrochemical Water Splitting
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2017-12-22 , DOI: 10.1002/aenm.201701655 Baicheng Weng 1 , Corey R. Grice 1 , Jie Ge 1 , Tilak Poudel 1 , Xunming Deng 1 , Yanfa Yan 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2017-12-22 , DOI: 10.1002/aenm.201701655 Baicheng Weng 1 , Corey R. Grice 1 , Jie Ge 1 , Tilak Poudel 1 , Xunming Deng 1 , Yanfa Yan 1
Affiliation
Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO3) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO3 nanosheet photoanodes can be further enhanced by applying Co0.8Mn0.2Ox nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm−2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO3 nanosheet photoanodes. The BBNO/WO3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices.
中文翻译:
铌酸钡铋钙钛矿/氧化钨纳米片光电阳极用于高性能光电化学水分解
最近,已报道了一种有效改造铌酸铋铋(BBNO)双钙钛矿带隙的新方法。然而,基于BBNO薄膜的平面电极由于其差的电导率而显示出低的水氧化光电流密度。在这里,据报道,可以通过在氧化钨(WO 3)纳米板上涂覆薄的BBNO层来解决导电性差的问题,同时保持强的光吸收性,从而显着提高BBNO基电极的光电化学(PEC)活性。通过使用Co 0.8 Mn 0.2 O x纳米颗粒作为助催化剂,可以进一步提高BBNO / WO 3纳米片光阳极的PEC活性。6.02 mA cm的光电流密度-2 1.23 V(VS可逆氢电极(RHE))使用三个光学堆叠而获得的,但电并联,BBNO / WO 3个纳米片光阳极。BBNO / WO 3纳米片光阳极在高pH碱性溶液中也表现出出色的稳定性。在连续PEC操作7小时以上时,光阳极显示出可忽略不计的光电流密度衰减。这项工作提出了一种可行的方法来改善基于BBNO吸收器的设备的PEC性能。
更新日期:2017-12-22
中文翻译:
铌酸钡铋钙钛矿/氧化钨纳米片光电阳极用于高性能光电化学水分解
最近,已报道了一种有效改造铌酸铋铋(BBNO)双钙钛矿带隙的新方法。然而,基于BBNO薄膜的平面电极由于其差的电导率而显示出低的水氧化光电流密度。在这里,据报道,可以通过在氧化钨(WO 3)纳米板上涂覆薄的BBNO层来解决导电性差的问题,同时保持强的光吸收性,从而显着提高BBNO基电极的光电化学(PEC)活性。通过使用Co 0.8 Mn 0.2 O x纳米颗粒作为助催化剂,可以进一步提高BBNO / WO 3纳米片光阳极的PEC活性。6.02 mA cm的光电流密度-2 1.23 V(VS可逆氢电极(RHE))使用三个光学堆叠而获得的,但电并联,BBNO / WO 3个纳米片光阳极。BBNO / WO 3纳米片光阳极在高pH碱性溶液中也表现出出色的稳定性。在连续PEC操作7小时以上时,光阳极显示出可忽略不计的光电流密度衰减。这项工作提出了一种可行的方法来改善基于BBNO吸收器的设备的PEC性能。