当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Embedding MnO@Mn3O4 Nanoparticles in an N‐Doped‐Carbon Framework Derived from Mn‐Organic Clusters for Efficient Lithium Storage
Advanced Materials ( IF 27.4 ) Pub Date : 2017-12-22 , DOI: 10.1002/adma.201704244
Yanting Chu 1 , Lingyu Guo 1 , Baojuan Xi 1 , Zhenyu Feng 1 , Fangfang Wu 1 , Yue Lin 2 , Jincheng Liu 1 , Di Sun 1 , Jinkui Feng 3 , Yitai Qian 1, 2 , Shenglin Xiong 1
Affiliation  

The first synthesis of MnO@Mn3O4 nanoparticles embedded in an N‐doped porous carbon framework (MnO@Mn3O4/NPCF) through pyrolysis of mixed‐valent Mn8 clusters is reported. The unique features of MnO@Mn3O4/NPCF are derived from the distinct interfacial structure of the Mn8 clusters, implying a new methodological strategy for hybrids. The characteristics of MnO@Mn3O4 are determined by conducting high angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and electron energy loss spectroscopy (EELS) valence‐state analyses. Due to the combined advantages of MnO@Mn3O4, the uniform distribution, and the NPCF, MnO@Mn3O4/NPCF displays unprecedented lithium‐storage performance (1500 mA h g−1 at 0.2 A g−1 over 270 cycles). Quantitative analysis reveals that capacitance and diffusion mechanisms account for Li+ storage, wherein the former dominates. First‐principles calculations highlight the strong affiliation of MnO@Mn3O4 and the NPCF, which favor structural stability. Meanwhile, defects of the NPCF decrease the diffusion energy barrier, thus enhancing the Li+ pseudocapacitive process, reversible capacity, and long cycling performance. This work presents a new methodology to construct composites for energy storage and conversion.

中文翻译:

将MnO @ Mn3O4纳米粒子嵌入源自锰有机簇的N掺杂碳骨架中以有效地存储锂

据报道,通过混合价的Mn 8团簇的热解,首次合成了嵌入N掺杂的多孔碳骨架中的MnO @ Mn 3 O 4纳米颗粒(MnO @ Mn 3 O 4 / NPCF)。MnO @ Mn 3 O 4 / NPCF的独特特征源自Mn 8团簇的独特界面结构,这暗示了一种新的杂化方法学策略。MnO @ Mn 3 O 4的特性通过进行大角度环形暗场扫描透射电子显微镜(HAADF‐STEM)和电子能量损失谱(EELS)价态分析确定。由于MnO @ Mn 3 O 4,均匀分布和NPCF的综合优势,MnO @ Mn 3 O 4 / NPCF显示了前所未有的锂存储性能(在270个循环中,在0.2 A g -1下为1500 mA hg -1)。定量分析表明,电容和扩散机制是锂+储存的原因,其中前者起主导作用。第一性原理计算突出了MnO @ Mn 3 O 4的强隶属关系NPCF,有利于结构稳定性。同时,NPCF的缺陷降低了扩散能垒,从而增强了Li +假电容过程,可逆容量和长循环性能。这项工作提出了一种新的方法来构造用于能量存储和转换的复合材料。
更新日期:2017-12-22
down
wechat
bug