当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot
Nano Letters ( IF 9.6 ) Pub Date : 2015-10-12 00:00:00 , DOI: 10.1021/acs.nanolett.5b02561 Ruoyu Li 1 , Fay E. Hudson 1 , Andrew S. Dzurak 1 , Alexander R. Hamilton 1
Nano Letters ( IF 9.6 ) Pub Date : 2015-10-12 00:00:00 , DOI: 10.1021/acs.nanolett.5b02561 Ruoyu Li 1 , Fay E. Hudson 1 , Andrew S. Dzurak 1 , Alexander R. Hamilton 1
Affiliation
In this work, we study hole transport in a planar silicon metal-oxide-semiconductor based double quantum dot. We demonstrate Pauli spin blockade in the few hole regime and map the spin relaxation induced leakage current as a function of interdot level spacing and magnetic field. With varied interdot tunnel coupling, we can identify different dominant spin relaxation mechanisms. Application of a strong out-of-plane magnetic field causes an avoided singlet–triplet level crossing, from which the heavy hole g-factor ∼0.93 and the strength of spin–orbit interaction ∼110 μeV can be obtained. The demonstrated strong spin–orbit interaction of heavy holes promises fast local spin manipulation using only electric fields, which is of great interest for quantum information processing.
中文翻译:
硅双量子点中的重孔的泡利自旋封锁
在这项工作中,我们研究了基于平面硅金属氧化物半导体的双量子点中的空穴传输。我们展示了在少数空穴状态下的Pauli自旋阻塞,并绘制了自旋弛豫引起的泄漏电流随点间距和磁场的变化关系。通过不同的点间隧道耦合,我们可以确定不同的主导自旋弛豫机制。施加强平面外磁场可避免单重态-三重态能级交叉,由此可得到重空穴g因子约为0.93,自旋轨道相互作用的强度约为110μeV。重空穴的强自旋轨道相互作用证明了仅使用电场就能进行快速的局部自旋操纵,这对量子信息处理非常感兴趣。
更新日期:2015-10-12
中文翻译:
硅双量子点中的重孔的泡利自旋封锁
在这项工作中,我们研究了基于平面硅金属氧化物半导体的双量子点中的空穴传输。我们展示了在少数空穴状态下的Pauli自旋阻塞,并绘制了自旋弛豫引起的泄漏电流随点间距和磁场的变化关系。通过不同的点间隧道耦合,我们可以确定不同的主导自旋弛豫机制。施加强平面外磁场可避免单重态-三重态能级交叉,由此可得到重空穴g因子约为0.93,自旋轨道相互作用的强度约为110μeV。重空穴的强自旋轨道相互作用证明了仅使用电场就能进行快速的局部自旋操纵,这对量子信息处理非常感兴趣。