当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hydrogenation of CO2 to Methanol: Importance of Metal–Oxide and Metal–Carbide Interfaces in the Activation of CO2
ACS Catalysis ( IF 11.3 ) Pub Date : 2015-10-12 00:00:00 , DOI: 10.1021/acscatal.5b01755
José A. Rodriguez 1 , Ping Liu 1 , Dario J. Stacchiola 1 , Sanjaya D. Senanayake 1 , Michael G. White 1 , Jingguang G. Chen 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2015-10-12 00:00:00 , DOI: 10.1021/acscatal.5b01755
José A. Rodriguez 1 , Ping Liu 1 , Dario J. Stacchiola 1 , Sanjaya D. Senanayake 1 , Michael G. White 1 , Jingguang G. Chen 1
Affiliation
![]() |
The high thermochemical stability of CO2 makes it very difficult to achieve the catalytic conversion of the molecule into alcohols or other hydrocarbon compounds, which can be used as fuels or the starting point for the generation of fine chemicals. Pure metals and bimetallic systems used for the CO2 → CH3OH conversion usually bind CO2 too weakly and, thus, show low catalytic activity. Here, we discuss a series of recent studies that illustrate the advantages of metal–oxide and metal–carbide interfaces when aiming at the conversion of CO2 into methanol. CeOx/Cu(111), Cu/CeOx/TiO2(110), and Au/CeOx/TiO2(110) exhibit an activity for the CO2 → CH3OH conversion that is 2–3 orders of magnitude higher than that of a benchmark Cu(111) catalyst. In the Cu–ceria and Au–ceria interfaces, the multifunctional combination of metal and oxide centers leads to complementary chemical properties that open active reaction pathways for methanol synthesis. Efficient catalysts are also generated after depositing Cu and Au on TiC(001). In these cases, strong metal–support interactions modify the electronic properties of the admetals and make them active for the binding of CO2 and its subsequent transformation into CH3OH at the metal–carbide interfaces.
中文翻译:
CO 2加氢成甲醇:CO 2活化中金属氧化物和金属碳化物界面的重要性
CO 2的高热化学稳定性使得很难将分子催化转化为醇或其他烃类化合物,而这些醇或烃类化合物可用作燃料或生成精细化学品的起点。用于CO 2 →CH 3 OH转化的纯金属和双金属体系通常太弱地结合CO 2,因此显示出较低的催化活性。在这里,我们讨论了一系列最新研究,这些研究说明了在将CO 2转化为甲醇时,金属氧化物和金属碳化物界面的优势。CeO x / Cu(111),Cu / CeO x / TiO 2(110)和Au / CeO x / TiO2(110)表现出的CO 2 →CH 3 OH转化活性比基准Cu(111)催化剂高2-3个数量级。在Cu-Ceria和Au-Ceria界面中,金属和氧化物中心的多功能组合导致互补的化学性质,从而打开了甲醇合成的活性反应路径。在TiC(001)上沉积Cu和Au后,还会产生高效的催化剂。在这些情况下,强金属与金属之间的相互作用会改变金属的电子性能,并使它们对于结合CO 2以及随后在金属与金属之间的界面转变为CH 3 OH具有活性。
更新日期:2015-10-12
中文翻译:

CO 2加氢成甲醇:CO 2活化中金属氧化物和金属碳化物界面的重要性
CO 2的高热化学稳定性使得很难将分子催化转化为醇或其他烃类化合物,而这些醇或烃类化合物可用作燃料或生成精细化学品的起点。用于CO 2 →CH 3 OH转化的纯金属和双金属体系通常太弱地结合CO 2,因此显示出较低的催化活性。在这里,我们讨论了一系列最新研究,这些研究说明了在将CO 2转化为甲醇时,金属氧化物和金属碳化物界面的优势。CeO x / Cu(111),Cu / CeO x / TiO 2(110)和Au / CeO x / TiO2(110)表现出的CO 2 →CH 3 OH转化活性比基准Cu(111)催化剂高2-3个数量级。在Cu-Ceria和Au-Ceria界面中,金属和氧化物中心的多功能组合导致互补的化学性质,从而打开了甲醇合成的活性反应路径。在TiC(001)上沉积Cu和Au后,还会产生高效的催化剂。在这些情况下,强金属与金属之间的相互作用会改变金属的电子性能,并使它们对于结合CO 2以及随后在金属与金属之间的界面转变为CH 3 OH具有活性。