Applied Catalysis A: General ( IF 4.7 ) Pub Date : 2017-12-21 , DOI: 10.1016/j.apcata.2017.12.011
Xiangjuan Yuan , Shule Duan , Guangyu Wu , Lei Sun , Gang Cao , Dongya Li , Haiming Xu , Qiang Li , Dongsheng Xia
![]() |
A series of functional organic-metal zinc oxide (ZnO) doped graphitic carbon nitride (g-C3N4) denoted as ZnO-CN composites were fabricated via a facile mixing and calcination approach. The composition, structure, and morphology of the as-prepared ZnO-CN composites were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), respectively. When loading amount of ZnO is 0.1 and calcination temperature is 650 °C (denoted as ZnO-CN0.1-650), the kinetic constant of atrazine (ATZ) degradation was 2.73 min−1, which was almost 10.5 times higher than that of ozone alone, exhibiting the highest catalytic ozonation activity. The results of the characterization indicated that ZnO-CN0.1-650 presents the mesoporous structure in laminated g-C3N4 and Zn(II) are strongly coordinated and stabilized within the electron-rich g-C3N4 framework. The feasibility of ZnO-CN0.1-650 for practical application was further evaluated at different catalyst dosages, initial ATZ concentrations, solution pHs, and natural organic matters. Radical scavengers experiments demonstrated that O2−, OH, and 1O2 are the dominant reactive radical species. In addition, the composite showed excellent stability for pollutants removal over multiple reaction cycles. A possible mechanism of the enhanced catalytic ozonation activity is attributed to the host-guest interaction between ZnO and g-C3N4, as well as the improved meso-porosity, increased surface area, and intensive mass and electron transfer ability ascribed to the electronic and surface properties modification. Overall, the ZnO-CN0.1-650 composite is demonstrated to be a highly efficient, stable, and recoverable catalyst, which provided a promising alternative in catalytic ozonation.
中文翻译:

高度稳定的介孔ZnO掺杂gC 3 N 4复合材料的催化臭氧氧化性能增强,可进行有效的水净化
通过简便的混合和煅烧方法,制备了一系列功能性有机金属氧化锌(ZnO)掺杂的石墨氮化碳(gC 3 N 4),表示为ZnO-CN复合材料。制备的ZnO-CN复合材料的组成,结构和形貌通过X射线衍射(XRD),Brunauer-Emmett-Teller(BET)表面积,傅立叶变换红外光谱(FT-IR),场发射扫描进行表征电子显微镜(FESEM),透射电子显微镜(TEM)和X射线光电子能谱(XPS)。当ZnO的负载量为0.1且煅烧温度为650°C(表示ZnO-CN 0.1 -650)时,at去津(ATZ)降解的动力学常数为2.73 min -1,这比单独的臭氧高几乎10.5倍,表现出最高的催化臭氧化活性。表征结果表明,ZnO-CN 0.1 -650具有层状gC 3 N 4的介孔结构,而Zn(II)在富电子的gC 3 N 4骨架内具有很强的配位性和稳定性。在不同的催化剂用量,初始ATZ浓度,溶液pH值和天然有机物的条件下,进一步评估了ZnO-CN 0.1 -650在实际应用中的可行性。自由基清除剂的实验表明,直径:2 -,OH,和1 Ò 2是主要的反应性自由基基团。此外,该复合材料在多个反应循环中显示出优异的稳定性,可去除污染物。ZnO与gC 3 N 4之间的主体-客体相互作用,以及介孔率的提高,表面积的增加以及归因于电子和电子的密集的质量和电子转移能力,可能归因于催化臭氧氧化活性的提高。表面性质的修改。总体而言,ZnO-CN 0.1 -650复合材料被证明是高效,稳定和可回收的催化剂,为催化臭氧化提供了有希望的替代方法。