当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anodizations of Al and Ti in NH4F or H3PO4 Solutions and Formation of Porous Anodic Alumina with Special Morphology
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2017-12-29 00:00:00 , DOI: 10.1021/acs.jpcc.7b09979 Mengshi Yu 1 , Huimin Cui 1 , Hao Li 2 , Shaoyu Zhang 1 , Jianshou Kong 3 , Siwei Zhao 1 , Fuping Ai 1 , Ye Song 1 , Xufei Zhu 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2017-12-29 00:00:00 , DOI: 10.1021/acs.jpcc.7b09979 Mengshi Yu 1 , Huimin Cui 1 , Hao Li 2 , Shaoyu Zhang 1 , Jianshou Kong 3 , Siwei Zhao 1 , Fuping Ai 1 , Ye Song 1 , Xufei Zhu 1
Affiliation
Porous anodic alumina (PAA) and anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades. However, their formation mechanism and growth kinetics remain unclear. Here two unconventional and two conventional anodizations of aluminum and titanium are contrasted to overcome this challenge. PAA with special morphology was fabricated in NH4F electrolyte for the first time, which cannot be explained by the popular field-assisted theory. Combining the oxygen bubble mold and the oxide flow model with the dissolution model, a new explanation for the special morphology is presented. In addition, anodic titanium oxide films with plenty of cavities were obtained in H3PO4 electrolyte, which absolutely differ from the general compact films. The cavities in anodic titanium oxide films also result from the oxygen bubbles within the oxide films. The anions in electrolyte (e.g., F–, OH–, PO43–) accumulate, and the anion-contaminated layer (ACL) forms due to the electric field. The ACL plays a decisive role in the generation of the electronic current (Je) and the formation of oxygen bubble mold. Regular ATNTs were obtained as titanium was anodized in NH4F electrolyte. The ACL forms and appropriate Je generates because the dissolution from F– on TiO2 is limited. However, PAA with special morphology was obtained as aluminum was anodized in NH4F electrolyte. Thicker ACL results in the impulse peak of the Je because the dissolution and corrosion from F– on alumina is severe.
中文翻译:
NH 4 F或H 3 PO 4溶液中Al和Ti的阳极氧化及特殊形态的多孔阳极氧化铝的形成
多孔阳极氧化铝(PAA)和阳极TiO 2纳米管(ATNT)已被广泛研究了数十年。但是,它们的形成机理和生长动力学仍不清楚。在此对比铝和钛的两种非常规阳极氧化和两种常规阳极氧化来克服这一挑战。首次在NH 4 F电解质中制备了具有特殊形貌的PAA ,这不能用流行的现场辅助理论来解释。将氧气气泡模型和氧化物流动模型与溶出模型相结合,给出了特殊形态的新解释。此外,在H 3 PO 4中获得了具有大量空穴的阳极氧化钛膜。电解质,它与一般的致密膜完全不同。阳极氧化钛膜中的空腔也是由氧化膜内的氧气气泡引起的。在电解液中的阴离子(例如,F -,OH -,PO 4 3-)累加,并且由于电场的阴离子污染层(ACL)的形式。ACL在电子电流(J e)的产生和氧气气泡霉菌的形成中起着决定性的作用。当钛在NH 4 F电解质中进行阳极氧化时,可获得常规ATNT 。形成ACL并生成合适的J e是因为F –在TiO 2上的溶解是有限的。然而,通过在NH 4 F电解质中对铝进行阳极氧化,可获得具有特殊形貌的PAA 。较厚的ACL会导致J e的脉冲峰值,因为F –在氧化铝上的溶解和腐蚀很严重。
更新日期:2017-12-29
中文翻译:
NH 4 F或H 3 PO 4溶液中Al和Ti的阳极氧化及特殊形态的多孔阳极氧化铝的形成
多孔阳极氧化铝(PAA)和阳极TiO 2纳米管(ATNT)已被广泛研究了数十年。但是,它们的形成机理和生长动力学仍不清楚。在此对比铝和钛的两种非常规阳极氧化和两种常规阳极氧化来克服这一挑战。首次在NH 4 F电解质中制备了具有特殊形貌的PAA ,这不能用流行的现场辅助理论来解释。将氧气气泡模型和氧化物流动模型与溶出模型相结合,给出了特殊形态的新解释。此外,在H 3 PO 4中获得了具有大量空穴的阳极氧化钛膜。电解质,它与一般的致密膜完全不同。阳极氧化钛膜中的空腔也是由氧化膜内的氧气气泡引起的。在电解液中的阴离子(例如,F -,OH -,PO 4 3-)累加,并且由于电场的阴离子污染层(ACL)的形式。ACL在电子电流(J e)的产生和氧气气泡霉菌的形成中起着决定性的作用。当钛在NH 4 F电解质中进行阳极氧化时,可获得常规ATNT 。形成ACL并生成合适的J e是因为F –在TiO 2上的溶解是有限的。然而,通过在NH 4 F电解质中对铝进行阳极氧化,可获得具有特殊形貌的PAA 。较厚的ACL会导致J e的脉冲峰值,因为F –在氧化铝上的溶解和腐蚀很严重。