当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Techno-economic and Life Cycle Analysis for Bioleaching Rare-Earth Elements from Waste Materials
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2017-12-27 00:00:00 , DOI: 10.1021/acssuschemeng.7b02771 Vicki S. Thompson 1 , Mayank Gupta , Hongyue Jin , Ehsan Vahidi , Matthew Yim 1 , Michael A. Jindra 1 , Van Nguyen 1 , Yoshiko Fujita 1 , John W. Sutherland , Yongqin Jiao 2 , David W. Reed 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2017-12-27 00:00:00 , DOI: 10.1021/acssuschemeng.7b02771 Vicki S. Thompson 1 , Mayank Gupta , Hongyue Jin , Ehsan Vahidi , Matthew Yim 1 , Michael A. Jindra 1 , Van Nguyen 1 , Yoshiko Fujita 1 , John W. Sutherland , Yongqin Jiao 2 , David W. Reed 1
Affiliation
A bioleaching process to extract rare-earth elements (REE) from fluidized catalytic cracking (FCC) catalysts was optimized using a heterotrophic bacterium Gluconobacter oxydans to produce organic acids from glucose. Parameters optimized included agitation intensity, oxygen levels, glucose concentrations, and nutrient additions. Biolixiviants from the optimized batch process demonstrated REE leaching efficiencies up to 56%. A continuous bioreactor system was subsequently developed to feed a leach process and demonstrated leaching efficiencies of 51%. A techno-economic analysis showed glucose to be the single largest expense for the bioleach process, constituting 44% of the total cost. The bioleaching plant described here was found profitable, although the margin was small. Lower cost carbon and energy sources for producing the biolixiviant, sourcing FCC catalysts with higher total REE content (>1.5% by mass), and improved leaching efficiencies would significantly increase the overall profit. A life cycle analysis showed that electricity and glucose required for the bioreactor had the largest potential for environmental impacts.
中文翻译:
废料中生物浸出稀土元素的技术经济与生命周期分析
使用异养细菌氧化葡糖杆菌(Gluconobacter oxydans)优化了从流化催化裂化(FCC)催化剂中提取稀土元素(REE)的生物浸出工艺。从葡萄糖生产有机酸。优化的参数包括搅拌强度,氧气水平,葡萄糖浓度和营养添加。经过优化的分批工艺的生物浸出剂显示出REE浸出效率高达56%。随后开发了一个连续的生物反应器系统,以供入浸出过程,并显示出51%的浸出效率。技术经济分析表明,葡萄糖是生物浸提过程中最大的一笔支出,占总成本的44%。尽管利润很小,但发现此处所述的生物浸出厂被认为是有利可图的。用于生产生物浸出剂的低成本碳源和能源,采购具有更高总REE含量(> 1.5质量%)的FCC催化剂,以及提高的浸出效率将显着提高整体利润。
更新日期:2017-12-27
中文翻译:
废料中生物浸出稀土元素的技术经济与生命周期分析
使用异养细菌氧化葡糖杆菌(Gluconobacter oxydans)优化了从流化催化裂化(FCC)催化剂中提取稀土元素(REE)的生物浸出工艺。从葡萄糖生产有机酸。优化的参数包括搅拌强度,氧气水平,葡萄糖浓度和营养添加。经过优化的分批工艺的生物浸出剂显示出REE浸出效率高达56%。随后开发了一个连续的生物反应器系统,以供入浸出过程,并显示出51%的浸出效率。技术经济分析表明,葡萄糖是生物浸提过程中最大的一笔支出,占总成本的44%。尽管利润很小,但发现此处所述的生物浸出厂被认为是有利可图的。用于生产生物浸出剂的低成本碳源和能源,采购具有更高总REE含量(> 1.5质量%)的FCC催化剂,以及提高的浸出效率将显着提高整体利润。