当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Template‐Assisted Electrospinning of Bubbled Carbon Nanofibers as Binder‐Free Electrodes for High‐Performance Supercapacitors
ChemElectroChem ( IF 3.5 ) Pub Date : 2017-12-01 , DOI: 10.1002/celc.201700962
Arthi Gopalakrishnan 1 , Parikshit Sahatiya 1 , Sushmee Badhulika 1
Affiliation  

Comparing the performance of recently reported electrospun carbon nanofiber (CNF)‐based supercapacitors, which use binders, we are reporting a binder‐free high‐performance supercapacitor based on porous bubbled surface carbon nanofibers (BCNFs). BCNFs have been synthesized by using a KIT‐6 silica template‐assisted electrospinning process, and they exhibit a high discharge specific capacitance of 287 F g−1 (79.7 mAh g−1). Brunauer−Emmett−Teller and FESEM analyses reveal that BCNFs have a large accessible surface area (593 m2 g−1) and well‐developed pore structures, leading to a high specific capacitance value. Furthermore, a BCNF supercapacitor exhibits good cyclic stability with improved capacity retention in aqueous electrolyte. The use of electrospinning and a hard template method for the synthesis avoids the use of aggressive materials and complicated activations, thereby making it an industry‐compatible process for large‐scale production. The present study, demonstrating the successful synthesis of BCNFs, is a major step ahead in the direction of developing new materials for binder‐free supercapacitors, which hold enormous potential for high‐performance energy storage devices.

中文翻译:

气泡辅助碳纳米纤维的模板辅助电纺丝作为高性能高性能超级电容器的无粘结剂电极

为了比较最近报道的使用粘合剂的静电纺碳纳米纤维(CNF)超级电容器的性能,我们报告了基于多孔气泡表面碳纳米纤维(BCNF)的无粘合剂高性能超级电容器。BCNF是使用KIT-6硅胶模板辅助电纺丝工艺合成的,具有287 F g -1(79.7 mAh g -1)的高放电比电容。Brunauer-Emmett-Teller和FESEM分析表明BCNF具有较大的可及表面积(593 m 2  g -1)和发达的孔结构,从而导致较高的比电容值。此外,BCNF超级电容器表现出良好的循环稳定性,并改善了在水性电解质中的容量保持率。在合成过程中使用静电纺丝和硬模板方法避免了使用侵蚀性材料和复杂的活化过程,从而使其成为行业兼容的大规模生产过程。本研究证明了BCNF的成功合成,是为无粘结剂超级电容器开发新材料的重要一步,该材料在高性能储能装置中具有巨大潜力。
更新日期:2017-12-01
down
wechat
bug