当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
All-Graphene-Based Highly Flexible Noncontact Electronic Skin
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-12-15 00:00:00 , DOI: 10.1021/acsami.7b13701 Jianing An , Truong-Son Dinh Le , Yi Huang , Zhaoyao Zhan , Yong Li , Lianxi Zheng 1 , Wei Huang 2 , Gengzhi Sun 2 , Young-Jin Kim
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-12-15 00:00:00 , DOI: 10.1021/acsami.7b13701 Jianing An , Truong-Son Dinh Le , Yi Huang , Zhaoyao Zhan , Yong Li , Lianxi Zheng 1 , Wei Huang 2 , Gengzhi Sun 2 , Young-Jin Kim
Affiliation
Noncontact electronic skin (e-skin), which possesses superior long-range and high-spatial-resolution sensory properties, is becoming indispensable in fulfilling the emulation of human sensation via prosthetics. Here, we present an advanced design and fabrication of all-graphene-based highly flexible noncontact e-skins by virtue of femtosecond laser direct writing (FsLDW). The photoreduced graphene oxide patterns function as the conductive electrodes, whereas the pristine graphene oxide thin film serves as the sensing layer. The as-fabricated e-skins exhibit high sensitivity, fast response–recovery behavior, good long-term stability, and excellent mechanical robustness. In-depth analysis reveals that the sensing mechanism is attributed to proton and ionic conductivity in the low and high humidity conditions, respectively. By taking the merits of the FsLDW, a 4 × 4 sensing matrix is facilely integrated in a single-step, eco-friendly, and green process. The light-weight and in-plane matrix shows high-spatial-resolution sensing capabilities over a long detection range in a noncontact mode. This study will open up an avenue to innovations in the noncontact e-skins and hold a promise for applications in wearable human–machine interfaces, robotics, and bioelectronics.
中文翻译:
基于全石墨烯的高度柔性非接触式电子皮肤
具有出色的远距离和高空间分辨率感官特性的非接触式电子皮肤(e-skin)在通过假肢实现对人类感觉的模仿中变得不可或缺。在这里,我们借助飞秒激光直接写入(FsLDW)提出了一种基于全石墨烯的高度柔性非接触式电子皮肤的先进设计和制造。光还原的氧化石墨烯图案用作导电电极,而原始的氧化石墨烯薄膜用作感测层。制成的电子皮肤具有高灵敏度,快速的响应-恢复行为,良好的长期稳定性和出色的机械强度。深入分析表明,该感应机制分别归因于低湿度和高湿度条件下的质子和离子电导率。利用FsLDW的优点,可将4×4感测矩阵轻松地集成到一个单步,环保且绿色的过程中。轻巧的平面内矩阵在非接触模式下的较长检测范围内显示出高空间分辨率的传感能力。这项研究将为非接触式电子皮肤的创新开辟一条道路,并有望在可穿戴式人机界面,机器人技术和生物电子学中得到应用。
更新日期:2017-12-15
中文翻译:
基于全石墨烯的高度柔性非接触式电子皮肤
具有出色的远距离和高空间分辨率感官特性的非接触式电子皮肤(e-skin)在通过假肢实现对人类感觉的模仿中变得不可或缺。在这里,我们借助飞秒激光直接写入(FsLDW)提出了一种基于全石墨烯的高度柔性非接触式电子皮肤的先进设计和制造。光还原的氧化石墨烯图案用作导电电极,而原始的氧化石墨烯薄膜用作感测层。制成的电子皮肤具有高灵敏度,快速的响应-恢复行为,良好的长期稳定性和出色的机械强度。深入分析表明,该感应机制分别归因于低湿度和高湿度条件下的质子和离子电导率。利用FsLDW的优点,可将4×4感测矩阵轻松地集成到一个单步,环保且绿色的过程中。轻巧的平面内矩阵在非接触模式下的较长检测范围内显示出高空间分辨率的传感能力。这项研究将为非接触式电子皮肤的创新开辟一条道路,并有望在可穿戴式人机界面,机器人技术和生物电子学中得到应用。