当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anthropogenic Chemical Carbon Cycle for a Sustainable Future
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2011-08-24 , DOI: 10.1021/ja202642y
George A. Olah 1 , G. K. Surya Prakash 1 , Alain Goeppert 1
Affiliation  

Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time, millions of years, can new fossil fuels be formed naturally. The burning of our diminishing fossil fuel reserves is accompanied by large anthropogenic CO(2) release, which is outpacing nature's CO(2) recycling capability, causing significant environmental harm. To supplement the natural carbon cycle, we have proposed and developed a feasible anthropogenic chemical recycling of carbon dioxide. Carbon dioxide is captured by absorption technologies from any natural or industrial source, from human activities, or even from the air itself. It can then be converted by feasible chemical transformations into fuels such as methanol, dimethyl ether, and varied products including synthetic hydrocarbons and even proteins for animal feed, thus supplementing our food chain. This concept of broad scope and framework is the basis of what we call the Methanol Economy. The needed renewable starting materials, water and CO(2), are available anywhere on Earth. The required energy for the synthetic carbon cycle can come from any alternative energy source such as solar, wind, geothermal, and even hopefully safe nuclear energy. The anthropogenic carbon dioxide cycle offers a way of assuring a sustainable future for humankind when fossil fuels become scarce. While biosources can play a limited role in supplementing future energy needs, they increasingly interfere with the essentials of the food chain. We have previously reviewed aspects of the chemical recycling of carbon dioxide to methanol and dimethyl ether. In the present Perspective, we extend the discussion of the innovative and feasible anthropogenic carbon cycle, which can be the basis of progressively liberating humankind from its dependence on diminishing fossil fuel reserves while also controlling harmful CO(2) emissions to the atmosphere. We also discuss in more detail the essential stages and the significant aspects of carbon capture and subsequent recycling. Our ability to develop a feasible anthropogenic chemical carbon cycle supplementing nature's photosynthesis also offers a new solution to one of the major challenges facing humankind.

中文翻译:

可持续未来的人为化学碳循环

大自然的光合作用利用太阳能和植物中的叶绿素作为催化剂,将二氧化碳和水循环到新的植物生命中。只有给予足够的地质时间,数百万年,才能自然形成新的化石燃料。我们不断减少的化石燃料储备的燃烧伴随着大量的人为 CO(2) 释放,这超出了大自然的 CO(2) 回收能力,造成了重大的环境危害。为了补充自然碳循环,我们提出并开发了一种可行的人为二氧化碳化学循环。二氧化碳可以通过吸收技术从任何自然或工业来源、人类活动甚至空气本身中捕获。然后可以通过可行的化学转化将其转化为燃料,例如甲醇、二甲醚、以及各种产品,包括用于动物饲料的合成碳氢化合物甚至蛋白质,从而补充我们的食物链。这种广泛的范围和框架的概念是我们所谓的甲醇经济的基础。所需的可再生原材料、水和 CO(2) 可在地球上的任何地方获得。合成碳循环所需的能量可以来自任何替代能源,例如太阳能、风能、地热,甚至是安全的核能。当化石燃料变得稀缺时,人为二氧化碳循环提供了一种确保人类可持续未来的方法。虽然生物资源在补充未来能源需求方面的作用有限,但它们越来越多地干扰食物链的基本要素。我们之前已经回顾了将二氧化碳化学回收为甲醇和二甲醚的各个方面。在当前的观点中,我们扩展了对创新和可行的人为碳循环的讨论,它可以成为逐步使人类摆脱对日益减少的化石燃料储备的依赖,同时控制有害的 CO(2) 排放到大气中的基础。我们还更详细地讨论了碳捕获和后续回收的基本阶段和重要方面。我们开发可行的人为化学碳循环以补充自然光合作用的能力也为人类面临的主要挑战之一提供了新的解决方案。这可以成为逐步使人类摆脱对不断减少的化石燃料储备的依赖的基础,同时还可以控制有害的 CO(2) 排放到大气中。我们还更详细地讨论了碳捕获和后续回收的基本阶段和重要方面。我们开发可行的人为化学碳循环以补充自然光合作用的能力也为人类面临的主要挑战之一提供了新的解决方案。这可以成为逐步使人类摆脱对不断减少的化石燃料储备的依赖的基础,同时还可以控制有害的 CO(2) 排放到大气中。我们还更详细地讨论了碳捕获和后续回收的基本阶段和重要方面。我们开发可行的人为化学碳循环以补充自然光合作用的能力也为人类面临的主要挑战之一提供了新的解决方案。
更新日期:2011-08-24
down
wechat
bug