当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Plasmid DNA Delivery: Nanotopography Matters
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2017-12-01 , DOI: 10.1021/jacs.7b08974 Hao Song 1 , Meihua Yu 1 , Yao Lu 1 , Zhengying Gu 1 , Yannan Yang 1 , Min Zhang 1 , Jianye Fu 1 , Chengzhong Yu 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2017-12-01 , DOI: 10.1021/jacs.7b08974 Hao Song 1 , Meihua Yu 1 , Yao Lu 1 , Zhengying Gu 1 , Yannan Yang 1 , Min Zhang 1 , Jianye Fu 1 , Chengzhong Yu 1
Affiliation
Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.
中文翻译:
质粒 DNA 递送:纳米拓扑学很重要
具有独特环状结构的质粒 DNA 分子具有广泛的生物应用,在许多情况下,严重依赖递送载体将它们引入细胞并实现其功能。在此,我们证明了控制二氧化硅纳米粒子作为质粒 DNA 载体的精细纳米形貌对转染效率有显着影响。对于分别由穗状、半球状和碗状亚基纳米形貌组成的红毛丹、覆盆子和花状二氧化硅纳米粒子,具有尖峰表面的红毛丹状纳米粒子表现出最高的质粒 DNA 结合能力和转染效率88%,高于报告的基于二氧化硅的纳米载体。而且,结果表明,红毛丹纳米粒子的表面尖峰提供了一个连续的开放空间,通过多价相互作用结合 DNA 链,并保护隐藏在尖刺层中的基因分子免受核酸酶降解,没有显着的转染衰减。这种独特的保护功能与具有相似转染性能但对酶促切割的保护能力较差的商业转染剂形成了鲜明对比。我们的研究为合理设计用于有效基因传递的非病毒载体提供了新的理解。这种独特的保护功能与具有相似转染性能但对酶促切割的保护能力较差的商业转染剂形成了鲜明对比。我们的研究为合理设计用于有效基因传递的非病毒载体提供了新的理解。这种独特的保护功能与具有相似转染性能但对酶促切割的保护能力较差的商业转染剂形成了鲜明对比。我们的研究为合理设计用于有效基因传递的非病毒载体提供了新的理解。
更新日期:2017-12-01
中文翻译:
质粒 DNA 递送:纳米拓扑学很重要
具有独特环状结构的质粒 DNA 分子具有广泛的生物应用,在许多情况下,严重依赖递送载体将它们引入细胞并实现其功能。在此,我们证明了控制二氧化硅纳米粒子作为质粒 DNA 载体的精细纳米形貌对转染效率有显着影响。对于分别由穗状、半球状和碗状亚基纳米形貌组成的红毛丹、覆盆子和花状二氧化硅纳米粒子,具有尖峰表面的红毛丹状纳米粒子表现出最高的质粒 DNA 结合能力和转染效率88%,高于报告的基于二氧化硅的纳米载体。而且,结果表明,红毛丹纳米粒子的表面尖峰提供了一个连续的开放空间,通过多价相互作用结合 DNA 链,并保护隐藏在尖刺层中的基因分子免受核酸酶降解,没有显着的转染衰减。这种独特的保护功能与具有相似转染性能但对酶促切割的保护能力较差的商业转染剂形成了鲜明对比。我们的研究为合理设计用于有效基因传递的非病毒载体提供了新的理解。这种独特的保护功能与具有相似转染性能但对酶促切割的保护能力较差的商业转染剂形成了鲜明对比。我们的研究为合理设计用于有效基因传递的非病毒载体提供了新的理解。这种独特的保护功能与具有相似转染性能但对酶促切割的保护能力较差的商业转染剂形成了鲜明对比。我们的研究为合理设计用于有效基因传递的非病毒载体提供了新的理解。