当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis of Vertical MoO2/MoS2 Core–Shell Structures on an Amorphous Substrate via Chemical Vapor Deposition
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2017-12-05 00:00:00 , DOI: 10.1021/acs.jpcc.7b08171 Taejin Park 1, 2 , Mirine Leem 3 , Hyangsook Lee 3, 4 , Wonsik Ahn 3 , Hoijoon Kim 3 , Jinbum Kim 1, 2 , Eunha Lee 4 , Yong-Hoon Kim 3, 5 , Hyoungsub Kim 3, 5
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2017-12-05 00:00:00 , DOI: 10.1021/acs.jpcc.7b08171 Taejin Park 1, 2 , Mirine Leem 3 , Hyangsook Lee 3, 4 , Wonsik Ahn 3 , Hoijoon Kim 3 , Jinbum Kim 1, 2 , Eunha Lee 4 , Yong-Hoon Kim 3, 5 , Hyoungsub Kim 3, 5
Affiliation
Vertical MoO2/MoS2 core–shell structures were synthesized on an amorphous surface (SiO2) by chemical vapor deposition at a high heating rate using a configuration in which the vapor phase was confined. The confined reaction configuration was achieved by partially covering the MoO3-containing boat with a substrate, which allowed rapid buildup of the partially reduced MoO3–x crystals in an early stage (below 680 °C). Rapid temperature ramping to 780 °C enabled spontaneous transition of the reaction environment from sulfur-poor to sulfur-rich, which induced a sequential phase transition from MoO3–x to intermediate MoO2 and finally to MoO2/MoS2 core–shell structures. The orthorhombic crystal structure of MoO3–x contributed to the formation of vertical crystals on the amorphous substrate, whereas the nonvolatility of the subsequently formed MoO2 enabled layer-by-layer sulfurization to form MoS2 on the oxide surface with minimal resublimation loss of MoO2. By adjustment of the sulfurization temperature and time, excellent control over the thickness of the MoS2 shell was achieved through the proposed synthesis method.
中文翻译:
通过化学气相沉积法在非晶基底上合成垂直MoO 2 / MoS 2核-壳结构
垂直MoO 2 / MoS 2核-壳结构是在无定形表面(SiO 2)上通过化学汽相淀积在高加热速率下使用受限的气相结构合成的。通过用基材部分覆盖含MoO 3的舟皿来实现受限的反应构型,从而可以在早期阶段(低于680°C)快速沉积部分还原的MoO 3– x晶体。快速升温至780°C,使反应环境从贫硫到富硫自发转变,从而引发了从MoO 3– x到中间MoO 2的连续相变最后是MoO 2 / MoS 2核-壳结构。MoO 3- x的正交晶体结构有助于在非晶态衬底上形成垂直晶体,而随后形成的MoO 2的非易失性则使得层状硫化能够在氧化物表面上形成MoS 2,并使Cb的再升华损失最小。 MoO 2。通过调节硫化温度和时间,通过提出的合成方法可以很好地控制MoS 2壳的厚度。
更新日期:2017-12-05
中文翻译:
通过化学气相沉积法在非晶基底上合成垂直MoO 2 / MoS 2核-壳结构
垂直MoO 2 / MoS 2核-壳结构是在无定形表面(SiO 2)上通过化学汽相淀积在高加热速率下使用受限的气相结构合成的。通过用基材部分覆盖含MoO 3的舟皿来实现受限的反应构型,从而可以在早期阶段(低于680°C)快速沉积部分还原的MoO 3– x晶体。快速升温至780°C,使反应环境从贫硫到富硫自发转变,从而引发了从MoO 3– x到中间MoO 2的连续相变最后是MoO 2 / MoS 2核-壳结构。MoO 3- x的正交晶体结构有助于在非晶态衬底上形成垂直晶体,而随后形成的MoO 2的非易失性则使得层状硫化能够在氧化物表面上形成MoS 2,并使Cb的再升华损失最小。 MoO 2。通过调节硫化温度和时间,通过提出的合成方法可以很好地控制MoS 2壳的厚度。