当前位置:
X-MOL 学术
›
Mater. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
双金属硒化镍钴对高速率Na离子存储的本征电导率优化
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2017-10-19 00:00:00 , DOI: 10.1039/c7qm00419b Chen Wu 1, 2, 3, 4 , Yuehua Wei 1, 2, 3, 4 , Qingwang Lian 1, 2, 3, 4 , Chao Cui 1, 2, 3, 4 , Weifeng Wei 1, 2, 3, 4 , Libao Chen 1, 2, 3, 4 , Chengchao Li 4, 5, 6, 7
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2017-10-19 00:00:00 , DOI: 10.1039/c7qm00419b Chen Wu 1, 2, 3, 4 , Yuehua Wei 1, 2, 3, 4 , Qingwang Lian 1, 2, 3, 4 , Chao Cui 1, 2, 3, 4 , Weifeng Wei 1, 2, 3, 4 , Libao Chen 1, 2, 3, 4 , Chengchao Li 4, 5, 6, 7
Affiliation
增强电极材料的电导率对于改善Na-离子电池(NIB)的高倍率性能至关重要。本文中,我们报告了通过精细组分调节和C涂层相结合来优化硒化镍钴的电导率和电化学性能的多方面策略。在这项研究中获得的C @ Ni 0.33 Co 0.67 Se 2 / C纳米纤维(CNF)(Co 0.67)杂化物的电导率为0.3733 S mm -1,比具有Ni / Co比的硒化物的电导率高五倍之2:1.结合所需的三维(3D)纳米刷形态和CNF的1D传导路径,Co 0.67即使在2 A g -1的情况下,该电极也能达到413.1 mA hg -1的优异倍率性能。此外,Co 0.67电极在100个循环后表现出令人印象深刻的499 mA hg -1的循环性能(显示出第二个循环的89.5%的容量保持率)。最后,在不同的扫描速率下进行了电化学阻抗谱(EIS)和循环伏安分析,以证明Co 0.67电极的快速电荷/离子传输能力和增强的电极动力学。
"点击查看英文标题和摘要"
更新日期:2017-11-22
"点击查看英文标题和摘要"