当前位置:
X-MOL 学术
›
Soft Matter
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-coacervation of modular squid beak proteins – a comparative study
Soft Matter ( IF 2.9 ) Pub Date : 2017-10-10 00:00:00 , DOI: 10.1039/c7sm01352c Hao Cai 1, 2, 3, 4 , Bartosz Gabryelczyk 1, 2, 3, 4 , Malathy S. S. Manimekalai 5, 6, 7 , Gerhard Grüber 5, 6, 7 , Stefan Salentinig 8, 9, 10, 11, 12 , Ali Miserez 1, 2, 3, 4, 5
Soft Matter ( IF 2.9 ) Pub Date : 2017-10-10 00:00:00 , DOI: 10.1039/c7sm01352c Hao Cai 1, 2, 3, 4 , Bartosz Gabryelczyk 1, 2, 3, 4 , Malathy S. S. Manimekalai 5, 6, 7 , Gerhard Grüber 5, 6, 7 , Stefan Salentinig 8, 9, 10, 11, 12 , Ali Miserez 1, 2, 3, 4, 5
Affiliation
The beak of the Humboldt squid is a biocomposite material made solely of organic components – chitin and proteins – which exhibits 200-fold stiffness and hardness gradients from the soft base to the exceptionally hard tip (rostrum). The outstanding mechanical properties of the squid beak are achieved via controlled hydration and impregnation of the chitin-based scaffold by protein coacervates. Molecular-based understanding of these proteins is essential to mimic the natural beak material. Here, we present detailed studies of two histidine-rich beak proteins (HBP-1 and -2) that play central roles during beak bio-fabrication. We show that both proteins have the ability to self-coacervate, which is governed intrinsically by the sequence modularity of their C-terminus and extrinsically by pH and ionic strength. We demonstrate that HBPs possess dynamic structures in solution and achieve maximum folding in the coacervate state, and propose that their self-coacervation is driven by hydrophobic interactions following charge neutralization through salt-screening. Finally, we show that subtle differences in the modular repeats of HBPs result in significant changes in the rheological response of the coacervates. This knowledge may be exploited to design self-coacervating polypeptides for a wide range of engineering and biomedical applications, for example bio-inspired composite materials, smart hydrogels and adhesives, and biomedical implants.
中文翻译:
模块化鱿鱼喙蛋白的自我凝聚能力-一项比较研究
洪堡乌贼的喙是一种生物复合材料,仅由几丁质和蛋白质等有机成分制成,从软质基底到异常坚硬的尖端(rostrum),呈现出200倍的硬度和硬度梯度。鱿鱼喙的出色机械性能可通过以下方式实现通过蛋白质凝聚层控制基于几丁质的支架的水合作用和浸渍。对这些蛋白质的基于分子的了解对于模拟天然喙材料至关重要。在这里,我们目前对两种富含组氨酸的喙蛋白(HBP-1和-2)进行详细研究,它们在喙生物制造过程中起着核心作用。我们显示这两种蛋白质具有自我凝聚的能力,这是由其C末端的序列模块性固有地控制,而由pH和离子强度外在地控制的。我们证明HBPs在溶液中具有动态结构,并在凝聚状态下实现最大折叠,并提出其自凝聚作用是由盐相互作用通过电荷中和后的疏水相互作用驱动的。最后,我们表明,HBP的模块重复中的细微差异会导致凝聚层的流变响应发生重大变化。可以利用该知识来设计自凝聚多肽,以用于广泛的工程和生物医学应用,例如生物启发的复合材料,智能水凝胶和粘合剂以及生物医学植入物。
更新日期:2017-11-01
中文翻译:
模块化鱿鱼喙蛋白的自我凝聚能力-一项比较研究
洪堡乌贼的喙是一种生物复合材料,仅由几丁质和蛋白质等有机成分制成,从软质基底到异常坚硬的尖端(rostrum),呈现出200倍的硬度和硬度梯度。鱿鱼喙的出色机械性能可通过以下方式实现通过蛋白质凝聚层控制基于几丁质的支架的水合作用和浸渍。对这些蛋白质的基于分子的了解对于模拟天然喙材料至关重要。在这里,我们目前对两种富含组氨酸的喙蛋白(HBP-1和-2)进行详细研究,它们在喙生物制造过程中起着核心作用。我们显示这两种蛋白质具有自我凝聚的能力,这是由其C末端的序列模块性固有地控制,而由pH和离子强度外在地控制的。我们证明HBPs在溶液中具有动态结构,并在凝聚状态下实现最大折叠,并提出其自凝聚作用是由盐相互作用通过电荷中和后的疏水相互作用驱动的。最后,我们表明,HBP的模块重复中的细微差异会导致凝聚层的流变响应发生重大变化。可以利用该知识来设计自凝聚多肽,以用于广泛的工程和生物医学应用,例如生物启发的复合材料,智能水凝胶和粘合剂以及生物医学植入物。