当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure and Electronic Properties of Interface-Confined Oxide Nanostructures
ACS Nano ( IF 15.8 ) Pub Date : 2017-10-30 00:00:00 , DOI: 10.1021/acsnano.7b06164
Yun Liu 1 , Yanxiao Ning 1 , Liang Yu 1 , Zhiwen Zhou 1, 2 , Qingfei Liu 1, 2 , Yi Zhang 1, 2 , Hao Chen 1, 2 , Jianping Xiao 1 , Ping Liu 3 , Fan Yang 1 , Xinhe Bao 1
Affiliation  

The controlled fabrication of nanostructures has often used a substrate template to mediate and control the growth kinetics. Electronic substrate-mediated interactions have been demonstrated to guide the assembly of organic molecules or the nucleation of metal atoms but usually at cryogenic temperatures, where the diffusion has been limited. Combining STM, STS, and DFT studies, we report that the strong electronic interaction between transition metals and oxides could indeed govern the growth of low-dimensional oxide nanostructures. As a demonstration, a series of FeO triangles, which are of the same structure and electronic properties but with different sizes (side length >3 nm), are synthesized on Pt(111). The strong interfacial interaction confines the growth of FeO nanostructures, leading to a discrete size distribution and a uniform step structure. Given the same interfacial configuration, as-grown FeO nanostructures not only expose identical edge/surface structure but also exhibit the same electronic properties, as manifested by the local density of states and local work functions. We expect the interfacial confinement effect can be generally applied to control the growth of oxide nanostructures on transition metal surfaces. These oxide nanostructures of the same structure and electronic properties are excellent models for studies of nanoscale effects and applications.

中文翻译:

界面受限的氧化物纳米结构的结构和电子性质

纳米结构的受控制造经常使用基质模板来介导和控制生长动力学。已证明电子底物介导的相互作用可引导有机分子的组装或金属原子的成核,但通常在扩散受限的低温条件下进行。结合STM,STS和DFT研究,我们报告过渡金属和氧化物之间的强电子相互作用确实可以控制低维氧化物纳米结构的生长。作为演示,在Pt(111)上合成了一系列具有相同结构和电子特性但具有不同尺寸(边长> 3 nm)的FeO三角形。强烈的界面相互作用限制了FeO纳米结构的生长,导致离散的尺寸分布和统一的阶梯结构。给定相同的界面构型,生长的FeO纳米结构不仅暴露出相同的边缘/表面结构,而且表现出相同的电子特性,这由状态的局部密度和局部的功函数来证明。我们期望界面约束效应可以普遍应用于控制过渡金属表面上的氧化物纳米结构的生长。这些具有相同结构和电子特性的氧化物纳米结构是研究纳米尺度效应和应用的极佳模型。我们期望界面约束效应可以普遍应用于控制过渡金属表面上的氧化物纳米结构的生长。这些具有相同结构和电子特性的氧化物纳米结构是研究纳米尺度效应和应用的极佳模型。我们期望界面约束效应可以普遍应用于控制过渡金属表面上的氧化物纳米结构的生长。这些具有相同结构和电子特性的氧化物纳米结构是研究纳米尺度效应和应用的极佳模型。
更新日期:2017-10-31
down
wechat
bug