当前位置:
X-MOL 学术
›
Chem. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Recent progress on exploring exceptionally high and anisotropic H+/OH− ion conduction in two-dimensional materials
Chemical Science ( IF 7.6 ) Pub Date : 2017-10-30 00:00:00 , DOI: 10.1039/c7sc04019a Pengzhan Sun 1 , Renzhi Ma 1 , Takayoshi Sasaki 1
Chemical Science ( IF 7.6 ) Pub Date : 2017-10-30 00:00:00 , DOI: 10.1039/c7sc04019a Pengzhan Sun 1 , Renzhi Ma 1 , Takayoshi Sasaki 1
Affiliation
Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H+/OH− ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H+/OH− conducting membranes.
中文翻译:
探索二维材料中极高且各向异性的 H+/OH− 离子传导的最新进展
离子导电膜/电解质已广泛应用于一些重要的工业和生物系统,特别是在燃料电池、水电解槽、气体分离、传感器和生物选择性离子传输等领域,作为核心部件之一,有时直接决定器件性能。然而,传统的聚合物质子交换膜(PEM)/阴离子交换膜(AEM)存在制备过程毒性高、热稳定性和化学稳定性差以及离子电导率不理想的问题。这促使世界各地的研究人员从新材料库中探索具有高离子电导率和稳定性的替代无机构件,希望解决上述长期存在的问题。最近对二维(2D)材料的蓬勃发展研究揭示了极高的离子电导率,这提高了制造基于纳米片的高性能离子导体/膜的可行性。从这个角度来看,回顾了测量和理解代表性二维材料(例如氧化石墨烯(GO)、蛭石和层状双氢氧化物(LDH)纳米片)的极高且各向异性的H + /OH -离子电导率的最新进展。特别是,关于二维纳米片中的各向异性离子传导,提出了制造宏观纳米片基离子导体/膜的可能设计策略和技术创新,以最大化高面内传导,这可能有助于指导高性能的未来发展依赖 H + /OH -传导膜的工业和生物系统。
更新日期:2017-10-30
中文翻译:
探索二维材料中极高且各向异性的 H+/OH− 离子传导的最新进展
离子导电膜/电解质已广泛应用于一些重要的工业和生物系统,特别是在燃料电池、水电解槽、气体分离、传感器和生物选择性离子传输等领域,作为核心部件之一,有时直接决定器件性能。然而,传统的聚合物质子交换膜(PEM)/阴离子交换膜(AEM)存在制备过程毒性高、热稳定性和化学稳定性差以及离子电导率不理想的问题。这促使世界各地的研究人员从新材料库中探索具有高离子电导率和稳定性的替代无机构件,希望解决上述长期存在的问题。最近对二维(2D)材料的蓬勃发展研究揭示了极高的离子电导率,这提高了制造基于纳米片的高性能离子导体/膜的可行性。从这个角度来看,回顾了测量和理解代表性二维材料(例如氧化石墨烯(GO)、蛭石和层状双氢氧化物(LDH)纳米片)的极高且各向异性的H + /OH -离子电导率的最新进展。特别是,关于二维纳米片中的各向异性离子传导,提出了制造宏观纳米片基离子导体/膜的可能设计策略和技术创新,以最大化高面内传导,这可能有助于指导高性能的未来发展依赖 H + /OH -传导膜的工业和生物系统。