当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bulk Doping of Millimeter‐Thick Conjugated Polymer Foams for Plastic Thermoelectrics
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2017-10-24 , DOI: 10.1002/adfm.201704183 Renee Kroon 1 , Jason D. Ryan 1 , David Kiefer 1 , Liyang Yu 1 , Jonna Hynynen 1 , Eva Olsson 2 , Christian Müller 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2017-10-24 , DOI: 10.1002/adfm.201704183 Renee Kroon 1 , Jason D. Ryan 1 , David Kiefer 1 , Liyang Yu 1 , Jonna Hynynen 1 , Eva Olsson 2 , Christian Müller 1
Affiliation
Foaming of plastics allows for extensive tuning of mechanical and physicochemical properties. Utilizing the foam architecture for plastic semiconductors can be used to improve ingression of external molecular species that govern the operation of organic electronic devices. In case of plastic thermoelectrics, utilizing solid semiconductors with realistic (millimeter (mm)‐thick) dimensions does not permit sequential doping—while sequential doping offers the higher thermoelectric performance compared to other methods—because this doping methodology is diffusion limited. In this work, a fabrication process for poly(3‐hexylthiophene) (P3HT) foams is presented, based on a combination of salt leaching and thermally induced phase separation. The obtained micro‐ and nanoporous architecture permits rapid and uniform doping of mm‐thick foams with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane, while thick solid P3HT structures suffer from protracted doping times and a dopant‐depleted central region. Importantly, the thermoelectric performance of a P3HT foam is largely retained when normalized with regard to the quantity of used material.
中文翻译:
用于塑料热电的毫米厚度共轭聚合物泡沫的批量掺杂
塑料的发泡可广泛调节机械和物理化学性质。将泡沫体系结构用于塑料半导体可用于改善控制有机电子设备运行的外部分子种类的入侵。就塑料热电而言,利用具有实际(毫米(mm)厚)尺寸的固体半导体不允许进行顺序掺杂(尽管与其他方法相比,顺序掺杂提供了更高的热电性能),因为这种掺杂方法受到扩散限制。在这项工作中,提出了一种基于盐浸和热诱导相分离相结合的聚(3-己基噻吩)(P3HT)泡沫的制造工艺。所获得的微孔和纳米孔结构可以快速,均匀地掺杂2,3,5,6-四氟-7,7,7,8,8-四氰基喹二甲烷,而厚实的P3HT结构则受掺杂时间延长和中心掺杂剂耗尽的困扰。重要的是,当就所用材料的数量进行归一化时,P3HT泡沫的热电性能在很大程度上得以保留。
更新日期:2017-10-24
中文翻译:
用于塑料热电的毫米厚度共轭聚合物泡沫的批量掺杂
塑料的发泡可广泛调节机械和物理化学性质。将泡沫体系结构用于塑料半导体可用于改善控制有机电子设备运行的外部分子种类的入侵。就塑料热电而言,利用具有实际(毫米(mm)厚)尺寸的固体半导体不允许进行顺序掺杂(尽管与其他方法相比,顺序掺杂提供了更高的热电性能),因为这种掺杂方法受到扩散限制。在这项工作中,提出了一种基于盐浸和热诱导相分离相结合的聚(3-己基噻吩)(P3HT)泡沫的制造工艺。所获得的微孔和纳米孔结构可以快速,均匀地掺杂2,3,5,6-四氟-7,7,7,8,8-四氰基喹二甲烷,而厚实的P3HT结构则受掺杂时间延长和中心掺杂剂耗尽的困扰。重要的是,当就所用材料的数量进行归一化时,P3HT泡沫的热电性能在很大程度上得以保留。