当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A novel true random number generator based on a stochastic diffusive memristor.
Nature Communications ( IF 14.7 ) Pub Date : 2017-10-12 , DOI: 10.1038/s41467-017-00869-x Hao Jiang , Daniel Belkin , Sergey E. Savel’ev , Siyan Lin , Zhongrui Wang , Yunning Li , Saumil Joshi , Rivu Midya , Can Li , Mingyi Rao , Mark Barnell , Qing Wu , J. Joshua Yang , Qiangfei Xia
Nature Communications ( IF 14.7 ) Pub Date : 2017-10-12 , DOI: 10.1038/s41467-017-00869-x Hao Jiang , Daniel Belkin , Sergey E. Savel’ev , Siyan Lin , Zhongrui Wang , Yunning Li , Saumil Joshi , Rivu Midya , Can Li , Mingyi Rao , Mark Barnell , Qing Wu , J. Joshua Yang , Qiangfei Xia
The intrinsic variability of switching behavior in memristors has been a major obstacle to their adoption as the next generation of universal memory. On the other hand, this natural stochasticity can be valuable for hardware security applications. Here we propose and demonstrate a novel true random number generator utilizing the stochastic delay time of threshold switching in a Ag:SiO2 diffusive memristor, which exhibits evident advantages in scalability, circuit complexity, and power consumption. The random bits generated by the diffusive memristor true random number generator pass all 15 NIST randomness tests without any post-processing, a first for memristive-switching true random number generators. Based on nanoparticle dynamic simulation and analytical estimates, we attribute the stochasticity in delay time to the probabilistic process by which Ag particles detach from a Ag reservoir. This work paves the way for memristors in hardware security applications for the era of the Internet of Things.Memristors can switch between high and low electrical-resistance states, but the switching behaviour can be unpredictable. Here, the authors harness this unpredictability to develop a memristor-based true random number generator that uses the stochastic delay time of threshold switching.
中文翻译:
一种基于随机扩散忆阻器的新型真随机数生成器。
忆阻器内开关行为的内在可变性已成为其被用作下一代通用存储器的主要障碍。另一方面,这种自然的随机性对于硬件安全应用程序可能是有价值的。在这里,我们提出并证明了一种新颖的真正随机数发生器,它利用了Ag:SiO 2中阈值切换的随机延迟时间扩散忆阻器,在可扩展性,电路复杂性和功耗方面显示出明显的优势。扩散忆阻器真随机数发生器生成的随机位通过了所有15个NIST随机性测试,而没有任何后处理,这是忆阻开关真随机数发生器的第一个方法。基于纳米粒子动力学模拟和分析估计,我们将延迟时间的随机性归因于Ag粒子从Ag储层中脱离的概率过程。这项工作为物联网时代的硬件安全应用中的忆阻器铺平了道路。忆阻器可以在高电阻状态和低电阻状态之间进行切换,但是切换行为可能是不可预测的。这里,
更新日期:2017-10-12
中文翻译:
一种基于随机扩散忆阻器的新型真随机数生成器。
忆阻器内开关行为的内在可变性已成为其被用作下一代通用存储器的主要障碍。另一方面,这种自然的随机性对于硬件安全应用程序可能是有价值的。在这里,我们提出并证明了一种新颖的真正随机数发生器,它利用了Ag:SiO 2中阈值切换的随机延迟时间扩散忆阻器,在可扩展性,电路复杂性和功耗方面显示出明显的优势。扩散忆阻器真随机数发生器生成的随机位通过了所有15个NIST随机性测试,而没有任何后处理,这是忆阻开关真随机数发生器的第一个方法。基于纳米粒子动力学模拟和分析估计,我们将延迟时间的随机性归因于Ag粒子从Ag储层中脱离的概率过程。这项工作为物联网时代的硬件安全应用中的忆阻器铺平了道路。忆阻器可以在高电阻状态和低电阻状态之间进行切换,但是切换行为可能是不可预测的。这里,