当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Metallurgy Inspired Formation of Homogeneous Al2O3 Coating Layer To Improve the Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2017-10-11 00:00:00 , DOI: 10.1021/acssuschemeng.7b02178 Mingxia Dong 1 , Zhixing Wang 1 , Hangkong Li 2 , Huajun Guo 1 , Xinhai Li 1 , Kaimin Shih 2 , Jiexi Wang 1, 2, 3
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2017-10-11 00:00:00 , DOI: 10.1021/acssuschemeng.7b02178 Mingxia Dong 1 , Zhixing Wang 1 , Hangkong Li 2 , Huajun Guo 1 , Xinhai Li 1 , Kaimin Shih 2 , Jiexi Wang 1, 2, 3
Affiliation
Inspired by the metallurgical process of aluminum production, a controllable and cost-effective Al2O3 coating strategy is introduced to improve the surface stability of LiNi0.8Co0.1Mn0.1O2. The CO2 is introduced to NaAlO2 aqueous solution to generate a weak basic condition that is able to decrease the deposition rate of Al(OH)3 and is beneficial to the uniform coating of Al(OH)3 on the surface of commercial Ni0.8Co0.1Mn0.1(OH)2 precursor. The electrochemical performance of Al2O3-coated LiNi0.8Co0.1Mn0.1O2 is improved at both ordinary cutoff voltage of 4.3 V and elevated cutoff voltage of 4.5 V. With the optimized Al2O3 coating amount (1%), the capacity retention of the material after 60 cycles increases from 90% to 99% at 2.8–4.3 V and from 86% to 99% at 2.8–4.5 V, respectively. The Al2O3-coated sample also delivers a better rate capability, maintaining 117 and 131 mA h g–1 in the voltage ranges 2.8–4.3 and 2.8 V–4.5 V at the current density of 5 C, respectively. The enhanced properties of as-prepared Al2O3-coated LiNi0.8Co0.1Mn0.1O2 are due to the Al2O3 coating layer building up a favorable interface, preventing the direct contact between the active material and electrolyte and promoting Li+ transmission at the interface.
中文翻译:
冶金学上启发形成均匀的Al 2 O 3涂层,以改善LiNi 0.8 Co 0.1 Mn 0.1 O 2阴极材料的电化学性能
受制铝工艺的启发,提出了一种可控且具有成本效益的Al 2 O 3涂层策略,以提高LiNi 0.8 Co 0.1 Mn 0.1 O 2的表面稳定性。将CO 2引入NaAlO 2水溶液中以产生弱碱性条件,该碱性条件能够降低Al(OH)3的沉积速率,并且有利于在工业Ni 0.8的表面上均匀地覆盖Al(OH)3。Co 0.1 Mn 0.1(OH)2前体。铝的电化学性能2 O 3涂层的LiNi 0.8 Co 0.1 Mn 0.1 O 2在4.3 V的常规截止电压和4.5 V的升高截止电压下均得到改善。通过优化的Al 2 O 3涂层量(1%),可以保持涂层的容量。 60个循环后,材料在2.8–4.3 V时从90%增加到99%,在2.8–4.5 V时从86%增加到99%。涂有Al 2 O 3的样品还具有更好的倍率能力,在5 C的电流密度下,在2.8–4.3和2.8 V–4.5 V的电压范围内分别维持117和131 mA hg –1。制备的Al 2 O的增强性能3涂层LiNi 0.8 Co 0.1 Mn 0.1 O 2是由于Al 2 O 3涂层建立了良好的界面,从而防止了活性物质与电解质之间的直接接触,并促进了界面处Li +的传输。
更新日期:2017-10-11
中文翻译:
冶金学上启发形成均匀的Al 2 O 3涂层,以改善LiNi 0.8 Co 0.1 Mn 0.1 O 2阴极材料的电化学性能
受制铝工艺的启发,提出了一种可控且具有成本效益的Al 2 O 3涂层策略,以提高LiNi 0.8 Co 0.1 Mn 0.1 O 2的表面稳定性。将CO 2引入NaAlO 2水溶液中以产生弱碱性条件,该碱性条件能够降低Al(OH)3的沉积速率,并且有利于在工业Ni 0.8的表面上均匀地覆盖Al(OH)3。Co 0.1 Mn 0.1(OH)2前体。铝的电化学性能2 O 3涂层的LiNi 0.8 Co 0.1 Mn 0.1 O 2在4.3 V的常规截止电压和4.5 V的升高截止电压下均得到改善。通过优化的Al 2 O 3涂层量(1%),可以保持涂层的容量。 60个循环后,材料在2.8–4.3 V时从90%增加到99%,在2.8–4.5 V时从86%增加到99%。涂有Al 2 O 3的样品还具有更好的倍率能力,在5 C的电流密度下,在2.8–4.3和2.8 V–4.5 V的电压范围内分别维持117和131 mA hg –1。制备的Al 2 O的增强性能3涂层LiNi 0.8 Co 0.1 Mn 0.1 O 2是由于Al 2 O 3涂层建立了良好的界面,从而防止了活性物质与电解质之间的直接接触,并促进了界面处Li +的传输。