当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial Antiferromagnetic Coupling and Dual-Exchange Bias in Tetragonal SrRuO3–PrMnO3 Superlattices
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-10-05 00:00:00 , DOI: 10.1021/acsami.7b11930 Antarjami Sahoo 1 , Prahallad Padhan 1 , Wilfrid Prellier 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-10-05 00:00:00 , DOI: 10.1021/acsami.7b11930 Antarjami Sahoo 1 , Prahallad Padhan 1 , Wilfrid Prellier 2
Affiliation
The functional properties of oxide heterostructures depend on the interfaces accommodating ions, their spins, and structural mismatches. Here, by stabilizing tetragonal symmetry, we achieve the in-plane antiferromagnetic (AFM) ordering and dual-exchange bias in the superlattices consisting of two ferromagnets SrRuO3 (SRO) and PrMnO3 (PMO). The tetragonal symmetry of this superlattice system achieved after the octahedral rotations yield an elongation of the c-axis parameter with Ru–O–Mn bond angle close to 180°, induces an interfacial antiferromagnetic ordering, which is suppressed as the ferromagnetic (FM) ordering in the PMO layer increases. The 0.1 T in-plane cooling field (Hcool) leads to the shift (ca. −0.04 T) of minor hysteresis loop along the negative field axis due to the presence of −0.87 erg/cm2 AFM interfacial exchange coupling energy density (ERu,Mn) at 20 K. The exchange bias field (HEB) switches from negative to positive value with the increase in Hcool. For 5 T Hcool, the HEB is positive, but the ERu,Mn is −1.25 erg/cm2 for n ≤ 8 (n = number of unit cells of PMO) and 1.52 erg/cm2 for n ≥ 8. The HEB and its switching from negative to positive with the increase in Hcool are explained by the interplay of strong antiferromagnetic coupling energy and Zeeman energy at the interfaces. The results demonstrate that the SRO–PMO superlattice could be a model system for the investigation of the interfacial exchange coupling in functional oxides.
中文翻译:
四方SrRuO 3 –PrMnO 3超晶格中的界面反铁磁耦合和双交换偏置
氧化物异质结构的功能特性取决于容纳离子的界面,其自旋和结构失配。在这里,通过稳定四方对称性,我们在由两个铁磁体SrRuO 3(SRO)和PrMnO 3(PMO)组成的超晶格中实现了面内反铁磁(AFM)有序和双交换偏置。在八面体旋转之后,该超晶格系统的四边形对称性产生了c-轴参数的伸长,Ru-O-Mn键角接近180°,引起了界面反铁磁有序,随着铁磁(FM)有序而被抑制在PMO层中增加。0.1 T面内冷却场(H cool)由于在20 K下存在-0.87 erg / cm 2 AFM界面交换耦合能量密度(E Ru,Mn)而导致沿负场轴的微小磁滞回线移动(ca. -0.04 T)。随着H cool的增加,偏压场(H EB)从负值变为正值。对于5吨ħ凉,则ħ EB是阳性,但ë茹,锰是-1.25尔格/厘米2为Ñ ≤8(Ñ = PMO的单元电池的个数)和1.52尔格/厘米2为Ñ ≥8。该^ hEB及其随着H cool的增加而从负向正转换,可以通过界面处强反铁磁耦合能和塞曼能的相互作用来解释。结果表明,SRO-PMO超晶格可以作为研究功能性氧化物中界面交换耦合的模型系统。
更新日期:2017-10-05
中文翻译:
四方SrRuO 3 –PrMnO 3超晶格中的界面反铁磁耦合和双交换偏置
氧化物异质结构的功能特性取决于容纳离子的界面,其自旋和结构失配。在这里,通过稳定四方对称性,我们在由两个铁磁体SrRuO 3(SRO)和PrMnO 3(PMO)组成的超晶格中实现了面内反铁磁(AFM)有序和双交换偏置。在八面体旋转之后,该超晶格系统的四边形对称性产生了c-轴参数的伸长,Ru-O-Mn键角接近180°,引起了界面反铁磁有序,随着铁磁(FM)有序而被抑制在PMO层中增加。0.1 T面内冷却场(H cool)由于在20 K下存在-0.87 erg / cm 2 AFM界面交换耦合能量密度(E Ru,Mn)而导致沿负场轴的微小磁滞回线移动(ca. -0.04 T)。随着H cool的增加,偏压场(H EB)从负值变为正值。对于5吨ħ凉,则ħ EB是阳性,但ë茹,锰是-1.25尔格/厘米2为Ñ ≤8(Ñ = PMO的单元电池的个数)和1.52尔格/厘米2为Ñ ≥8。该^ hEB及其随着H cool的增加而从负向正转换,可以通过界面处强反铁磁耦合能和塞曼能的相互作用来解释。结果表明,SRO-PMO超晶格可以作为研究功能性氧化物中界面交换耦合的模型系统。