Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly thermally conductive and mechanically strong graphene fibers
Science ( IF 44.7 ) Pub Date : 2015-09-03 , DOI: 10.1126/science.aaa6502 Guoqing Xin 1 , Tiankai Yao 1 , Hongtao Sun 1 , Spencer Michael Scott 1 , Dali Shao 2 , Gongkai Wang 1 , Jie Lian 1
Science ( IF 44.7 ) Pub Date : 2015-09-03 , DOI: 10.1126/science.aaa6502 Guoqing Xin 1 , Tiankai Yao 1 , Hongtao Sun 1 , Spencer Michael Scott 1 , Dali Shao 2 , Gongkai Wang 1 , Jie Lian 1
Affiliation
A superior mix of big and small Graphene is often described as an unrolled carbon nanotube. However, although nanotubes are known for their exceptional mechanical and conductivity properties, the same is not true of graphene-based fibers. Xin et al. intercalated small fragments of graphene into the gaps formed by larger graphene sheets that had been coiled into fibers. Once annealed, the large sheets provided pathways for conduction, while the smaller fragments helped reinforce the fibers. The result? Superior thermal and electrical conductivity and mechanical strength. Science, this issue p. 1083 Intercalated graphene sheets form compact, ordered fibers with enhanced thermal conductivity and mechanical properties. Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals.
中文翻译:
高导热且机械强度高的石墨烯纤维
大小石墨烯的高级混合通常被描述为展开的碳纳米管。然而,尽管纳米管以其卓越的机械和导电性能而闻名,但石墨烯基纤维并非如此。辛等人。将石墨烯的小碎片插入到由卷成纤维的较大石墨烯片形成的间隙中。退火后,大片材提供传导通路,而较小的碎片有助于增强纤维。结果?优越的导热性和导电性以及机械强度。科学,这个问题 p。1083 插层石墨烯片形成紧凑、有序的纤维,具有增强的导热性和机械性能。石墨烯是单层碳原子结合在六边形晶格中,是最薄、最坚固、和已知的最坚硬的材料和优良的热和电导体。然而,石墨烯衍生的宏观结构(如石墨烯纤维)尚未实现这些优越的性能。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。对于石墨烯衍生的宏观结构(例如石墨烯纤维),尚未实现这些优越的性能。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。对于石墨烯衍生的宏观结构(例如石墨烯纤维),尚未实现这些优越的性能。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。
更新日期:2015-09-03
中文翻译:
高导热且机械强度高的石墨烯纤维
大小石墨烯的高级混合通常被描述为展开的碳纳米管。然而,尽管纳米管以其卓越的机械和导电性能而闻名,但石墨烯基纤维并非如此。辛等人。将石墨烯的小碎片插入到由卷成纤维的较大石墨烯片形成的间隙中。退火后,大片材提供传导通路,而较小的碎片有助于增强纤维。结果?优越的导热性和导电性以及机械强度。科学,这个问题 p。1083 插层石墨烯片形成紧凑、有序的纤维,具有增强的导热性和机械性能。石墨烯是单层碳原子结合在六边形晶格中,是最薄、最坚固、和已知的最坚硬的材料和优良的热和电导体。然而,石墨烯衍生的宏观结构(如石墨烯纤维)尚未实现这些优越的性能。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。对于石墨烯衍生的宏观结构(例如石墨烯纤维),尚未实现这些优越的性能。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。对于石墨烯衍生的宏观结构(例如石墨烯纤维),尚未实现这些优越的性能。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。我们报告了具有高导热性和导电性以及增强的机械强度的石墨烯纤维的制造。内部纤维结构由大尺寸石墨烯片组成,形成高度有序的排列,中间夹有填充空间和微孔的小尺寸石墨烯片。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。石墨烯纤维通过高温处理表现出亚微米的微晶畴尺寸,实现了高达 1290 瓦/米/开尔文的热导率。石墨烯纤维的拉伸强度达到1080兆帕。