Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface/Interfacial Structure and Chemistry of High‐Energy Nickel‐Rich Layered Oxide Cathodes: Advances and Perspectives
Small ( IF 13.0 ) Pub Date : 2017-10-04 , DOI: 10.1002/smll.201701802 Peiyu Hou 1 , Jiangmei Yin 1 , Meng Ding 1 , Jinzhao Huang 1 , Xijin Xu 1
Small ( IF 13.0 ) Pub Date : 2017-10-04 , DOI: 10.1002/smll.201701802 Peiyu Hou 1 , Jiangmei Yin 1 , Meng Ding 1 , Jinzhao Huang 1 , Xijin Xu 1
Affiliation
The urgent prerequisites of high energy‐density and superior electrochemical properties have been the main inspiration for the advancement of cathode materials in lithium‐ion batteries (LIBs) in the last two decades. Nickel‐rich layered transition‐metal oxides with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next‐generation LIBs. Nonetheless, the poor long‐term cycle‐life and inferior thermal stability have limited their broadly practical applications. In the research of LIBs, it is observed that surface/interfacial structure and chemistry play significant roles in the performance of cathode cycling. This is due to the fact that they are basically responsible for the reversibility of Li+ intercalation/deintercalation chemistries while dictating the kinetics of the general cell reactions. In this Review, the surface/interfacial structure and chemistry of nickel‐rich layered cathodes involving structural defects, redox mechanisms, structural evolutions, side‐reactions among others are initially demonstrated. Recent advancements in stabilizing the surface/interfacial structure and chemistry of nickel‐rich cathodes by surface modification, core–shell/concentration‐gradient structure, foreign‐ion substitution, hybrid surface, and electrolyte additive are presented. Then lastly, the remaining challenges such as the fundamental studies and commercialized applications, as well as the future research directions are discussed.
中文翻译:
高能富镍层状氧化物阴极的表面/界面结构与化学:进展与展望
在过去的二十年中,高能量密度和优异的电化学性能的紧迫先决条件一直是锂离子电池(LIB)正极材料发展的主要灵感。具有大可逆容量和高工作电压的富镍层状过渡金属氧化物被认为是下一代LIB的最有希望的候选者。然而,不良的长期循环寿命和较差的热稳定性限制了其广泛的实际应用。在LIB的研究中,观察到表面/界面结构和化学在阴极循环的性能中起重要作用。这是因为它们基本上负责Li +的可逆性。嵌入/脱嵌化学,同时决定一般细胞反应的动力学。在本综述中,最初证明了富镍层状阴极的表面/界面结构和化学性质,涉及结构缺陷,氧化还原机理,结构演变,副反应等。通过表面改性,核-壳/浓度梯度结构,外来离子取代,杂化表面和电解质添加剂,在稳定富镍阴极的表面/界面结构和化学方面取得了最新进展。最后,讨论了诸如基础研究和商业化应用等尚存的挑战,以及未来的研究方向。
更新日期:2017-10-04
中文翻译:
高能富镍层状氧化物阴极的表面/界面结构与化学:进展与展望
在过去的二十年中,高能量密度和优异的电化学性能的紧迫先决条件一直是锂离子电池(LIB)正极材料发展的主要灵感。具有大可逆容量和高工作电压的富镍层状过渡金属氧化物被认为是下一代LIB的最有希望的候选者。然而,不良的长期循环寿命和较差的热稳定性限制了其广泛的实际应用。在LIB的研究中,观察到表面/界面结构和化学在阴极循环的性能中起重要作用。这是因为它们基本上负责Li +的可逆性。嵌入/脱嵌化学,同时决定一般细胞反应的动力学。在本综述中,最初证明了富镍层状阴极的表面/界面结构和化学性质,涉及结构缺陷,氧化还原机理,结构演变,副反应等。通过表面改性,核-壳/浓度梯度结构,外来离子取代,杂化表面和电解质添加剂,在稳定富镍阴极的表面/界面结构和化学方面取得了最新进展。最后,讨论了诸如基础研究和商业化应用等尚存的挑战,以及未来的研究方向。