Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis of Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18 Nanomolecules from a Common Precursor Mixture
Langmuir ( IF 3.7 ) Pub Date : 2017-10-03 00:00:00 , DOI: 10.1021/acs.langmuir.7b03080 Milan Rambukwella 1 , Amala Dass 1
Langmuir ( IF 3.7 ) Pub Date : 2017-10-03 00:00:00 , DOI: 10.1021/acs.langmuir.7b03080 Milan Rambukwella 1 , Amala Dass 1
Affiliation
Phenylethanethiol protected nanomolecules such as Au25, Au38, and Au144 are widely studied by a broad range of scientists in the community, owing primarily to the availability of simple synthetic protocols. However, synthetic methods are not available for other ligands, such as aromatic thiol and bulky ligands, impeding progress. Here we report the facile synthesis of three distinct nanomolecules, Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18, exclusively, starting from a common Aun(glutathione)m (where n and m are number of gold atoms and glutathiolate ligands) starting material upon reaction with HSCH2CH2Ph, HSPh-tBu, and HStBu, respectively. The systematic synthetic approach involves two steps: (i) synthesis of kinetically controlled Aun(glutathione)m crude nanocluster mixture with 1:4 gold to thiol molar ratio and (ii) thermochemical treatment of the purified nanocluster mixture with excess thiols to obtain thermodynamically stable nanomolecules. Thermochemical reactions with physicochemically different ligands formed highly monodispersed, exclusively three different core-size nanomolecules, suggesting a ligand induced core-size conversion and structural transformation. The purpose of this work is to make available a facile and simple synthetic method for the preparation of Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18, to nonspecialists and the broader scientific community. The central idea of simple synthetic method was demonstrated with other ligand systems such as cyclopentanethiol (HSC5H9), cyclohexanethiol(HSC6H11), para-methylbenzenethiol(pMBT), 1-pentanethiol(HSC5H11), 1-hexanethiol(HSC6H13), where Au36(SC5H9)24, Au36(SC6H11)24, Au36(pMBT)24, Au38(SC5H11)24, and Au38(SC6H13)24 were obtained, respectively.
中文翻译:
从常见的前体混合物合成Au 38(SCH 2 CH 2 Ph)24,Au 36(SPh- t Bu)24和Au 30(S- t Bu)18纳米分子。
苯乙硫醇保护的纳米分子(例如Au 25,Au 38和Au 144)已被广泛的科学家广泛研究,这主要归因于简单的合成方案的可用性。但是,合成方法不适用于其他配体,例如芳族硫醇和庞大的配体,这阻碍了其发展。在这里,我们从普通的Au开始报告了三种独特的纳米分子的简便合成,它们分别是Au 38(SCH 2 CH 2 Ph)24,Au 36(SPh- t Bu)24和Au 30(S- t Bu)18。ñ分别与HSCH 2 CH 2 Ph,HSPh- t Bu和HS t Bu反应时的(谷胱甘肽)m(其中n和m是金原子数和谷硫醇酯配体的数目)的起始原料。系统的合成方法包括两个步骤:的动力学控制的金(I)的合成Ñ(谷胱甘肽)米具有1∶4的金与硫醇摩尔比的粗纳米簇混合物和(ii)用过量的硫醇对纯化的纳米簇混合物进行热化学处理以获得热力学稳定的纳米分子。与理化上不同的配体的热化学反应形成高度单分散的,仅三个不同核尺寸的纳米分子,表明配体诱导了核尺寸转化和结构转化。这项工作的目的是提供一种简便而简单的合成方法来制备Au 38(SCH 2 CH 2 Ph)24,Au 36(SPh- t Bu)24和Au 30(S- t Bu)18非专业人士和更广泛的科学界。其他配体体系,例如环戊硫醇(HSC 5 H 9),环己硫醇(HSC 6 H 11),对甲基苯硫醇(pMBT),1-戊硫醇(HSC 5 H 11),1-证明了简单合成方法的中心思想。己硫醇(HSC 6 H 13),其中Au 36(SC 5 H 9)24,Au 36(SC 6 H 11)24,Au 36(pMBT)24,Au分别获得38(SC 5 H 11)24和Au 38(SC 6 H 13)24。
更新日期:2017-10-03
中文翻译:
从常见的前体混合物合成Au 38(SCH 2 CH 2 Ph)24,Au 36(SPh- t Bu)24和Au 30(S- t Bu)18纳米分子。
苯乙硫醇保护的纳米分子(例如Au 25,Au 38和Au 144)已被广泛的科学家广泛研究,这主要归因于简单的合成方案的可用性。但是,合成方法不适用于其他配体,例如芳族硫醇和庞大的配体,这阻碍了其发展。在这里,我们从普通的Au开始报告了三种独特的纳米分子的简便合成,它们分别是Au 38(SCH 2 CH 2 Ph)24,Au 36(SPh- t Bu)24和Au 30(S- t Bu)18。ñ分别与HSCH 2 CH 2 Ph,HSPh- t Bu和HS t Bu反应时的(谷胱甘肽)m(其中n和m是金原子数和谷硫醇酯配体的数目)的起始原料。系统的合成方法包括两个步骤:的动力学控制的金(I)的合成Ñ(谷胱甘肽)米具有1∶4的金与硫醇摩尔比的粗纳米簇混合物和(ii)用过量的硫醇对纯化的纳米簇混合物进行热化学处理以获得热力学稳定的纳米分子。与理化上不同的配体的热化学反应形成高度单分散的,仅三个不同核尺寸的纳米分子,表明配体诱导了核尺寸转化和结构转化。这项工作的目的是提供一种简便而简单的合成方法来制备Au 38(SCH 2 CH 2 Ph)24,Au 36(SPh- t Bu)24和Au 30(S- t Bu)18非专业人士和更广泛的科学界。其他配体体系,例如环戊硫醇(HSC 5 H 9),环己硫醇(HSC 6 H 11),对甲基苯硫醇(pMBT),1-戊硫醇(HSC 5 H 11),1-证明了简单合成方法的中心思想。己硫醇(HSC 6 H 13),其中Au 36(SC 5 H 9)24,Au 36(SC 6 H 11)24,Au 36(pMBT)24,Au分别获得38(SC 5 H 11)24和Au 38(SC 6 H 13)24。