当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A full-pivoting algorithm for the Cholesky decomposition of two-electron repulsion and spin-orbit coupling integrals
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2017-09-25 , DOI: 10.1002/jcc.25062
Matteo Piccardo 1 , Alessandro Soncini 1
Affiliation  

A significant reduction in the computational effort for the evaluation of the electronic repulsion integrals (ERI) in ab initio quantum chemistry calculations is obtained by using Cholesky decomposition (CD), a numerical procedure that can remove the zero or small eigenvalues of the ERI positive (semi)definite matrix, while avoiding the calculation of the entire matrix. Conversely, due to its antisymmetric character, CD cannot be directly applied to the matrix representation of the spatial part of the two‐electron spin‐orbit coupling (2e‐SOC) integrals. Here, we present a computational strategy to achieve a Cholesky representation of the spatial part of the 2e‐SOC integrals, and propose a new efficient CD algorithm for both ERI and 2e‐SOC integrals. The proposed algorithm differs from previous CD implementations by the extensive use of a full‐pivoting design, which allows a univocal definition of the Cholesky basis, once the CD δ threshold is made explicit. We show that 2δ is the upper limit for the errors affecting the reconstructed 2e‐SOC integrals. The proposed strategy was implemented in the ab initio program Computational Emulator of Rare Earth Systems (CERES), and tested for computational performance on both the ERI and 2e‐SOC integrals evaluation. © 2017 Wiley Periodicals, Inc.

中文翻译:

用于两电子斥力和自旋轨道耦合积分的 Cholesky 分解的全枢轴算法

通过使用 Cholesky 分解 (CD),可以显着减少从头计算量子化学计算中电子排斥积分 (ERI) 的计算工作量,这是一种可以去除 ERI 正值的零或小特征值的数值程序(半)定矩阵,同时避免计算整个矩阵。相反,由于其反对称特性,CD 不能直接应用于双电子自旋轨道耦合 (2e-SOC) 积分的空间部分的矩阵表示。在这里,我们提出了一种计算策略来实现 2e-SOC 积分的空间部分的 Cholesky 表示,并为 ERI 和 2e-SOC 积分提出了一种新的高效 CD 算法。所提出的算法与以前的 CD 实现不同,它广泛使用了全枢轴设计,一旦明确了 CD δ 阈值,就可以明确定义 Cholesky 基。我们表明 2δ 是影响重建的 2e-SOC 积分的误差的上限。所提出的策略在稀土系统计算仿真器 (CERES) 的 ab initio 程序中实施,并测试了 ERI 和 2e-SOC 积分评估的计算性能。© 2017 威利期刊公司。所提出的策略在稀土系统计算仿真器 (CERES) 的 ab initio 程序中实施,并测试了 ERI 和 2e-SOC 积分评估的计算性能。© 2017 威利期刊公司。所提出的策略在稀土系统计算仿真器 (CERES) 的 ab initio 程序中实施,并测试了 ERI 和 2e-SOC 积分评估的计算性能。© 2017 威利期刊公司。
更新日期:2017-09-25
down
wechat
bug