当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensorimotor computation underlying phototaxis in zebrafish.
Nature Communications ( IF 14.7 ) Pub Date : 2017-09-21 , DOI: 10.1038/s41467-017-00310-3
Sébastien Wolf , Alexis M. Dubreuil , Tommaso Bertoni , Urs Lucas Böhm , Volker Bormuth , Raphaël Candelier , Sophia Karpenko , David G. C. Hildebrand , Isaac H. Bianco , Rémi Monasson , Georges Debrégeas

Animals continuously gather sensory cues to move towards favourable environments. Efficient goal-directed navigation requires sensory perception and motor commands to be intertwined in a feedback loop, yet the neural substrate underlying this sensorimotor task in the vertebrate brain remains elusive. Here, we combine virtual-reality behavioural assays, volumetric calcium imaging, optogenetic stimulation and circuit modelling to reveal the neural mechanisms through which a zebrafish performs phototaxis, i.e. actively orients towards a light source. Key to this process is a self-oscillating hindbrain population (HBO) that acts as a pacemaker for ocular saccades and controls the orientation of successive swim-bouts. It further integrates visual stimuli in a state-dependent manner, i.e. its response to visual inputs varies with the motor context, a mechanism that manifests itself in the phase-locked entrainment of the HBO by periodic stimuli. A rate model is developed that reproduces our observations and demonstrates how this sensorimotor processing eventually biases the animal trajectory towards bright regions.Active locomotion requires closed-loop sensorimotor co ordination between perception and action. Here the authors show using behavioural, imaging and modelling approaches that gaze orientation during phototaxis behaviour in larval zebrafish is related to oscillatory dynamics of a neuronal population in the hindbrain.

中文翻译:

斑马鱼的趋光性的感应运动计算。

动物不断收集感官提示,朝着有利的环境迈进。高效的目标定向导航需要将感觉感知和运动命令交织在反馈回路中,但是在脊椎动物大脑中作为该感觉运动任务基础的神经基质仍然难以捉摸。在这里,我们结合了虚拟现实行为分析,体积钙成像,光遗传学刺激和电路建模,以揭示斑马鱼通过其趋光性(即主动朝向光源)的神经机制。此过程的关键是自激后脑种群(HBO),它充当眼球扫视的起搏器并控制连续游泳的方向。它以状态相关的方式进一步整合视觉刺激,即其对视觉输入的响应随运动环境而变化,一种通过周期性刺激将HBO锁相夹带表现出来的机制。建立了一个速率模型,该模型再现了我们的观察结果,并演示了这种感觉运动过程最终如何将动物的轨迹偏向明亮的区域。主动运动需要感知和动作之间的闭环感觉运动协调。在这里,作者展示了使用行为,成像和建模方法在幼虫斑马鱼的趋光性行为中注视定向与后脑神经元种群的振荡动力学有关。主动运动需要感知和行动之间的闭环感觉运动协调。在这里,作者展示了使用行为,成像和建模方法在幼虫斑马鱼的趋光性行为中注视定向与后脑神经元种群的振荡动力学有关。主动运动需要感知和行动之间的闭环感觉运动协调。在这里,作者展示了使用行为,成像和建模方法在幼虫斑马鱼的趋光性行为中注视定向与后脑神经元种群的振荡动力学有关。
更新日期:2017-09-21
down
wechat
bug