当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrically driven single-photon emission from an isolated single molecule.
Nature Communications ( IF 14.7 ) Pub Date : 2017-09-18 , DOI: 10.1038/s41467-017-00681-7
Li Zhang , Yun-Jie Yu , Liu-Guo Chen , Yang Luo , Ben Yang , Fan-Fang Kong , Gong Chen , Yang Zhang , Qiang Zhang , Yi Luo , Jin-Long Yang , Zhen-Chao Dong , J. G. Hou

Electrically driven molecular light emitters are considered to be one of the promising candidates as single-photon sources. However, it is yet to be demonstrated that electrically driven single-photon emission can indeed be generated from an isolated single molecule notwithstanding fluorescence quenching and technical challenges. Here, we report such electrically driven single-photon emission from a well-defined single molecule located inside a precisely controlled nanocavity in a scanning tunneling microscope. The effective quenching suppression and nanocavity plasmonic enhancement allow us to achieve intense and stable single-molecule electroluminescence. Second-order photon correlation measurements reveal an evident photon antibunching dip with the single-photon purity down to g (2)(0) = 0.09, unambiguously confirming the single-photon emission nature of the single-molecule electroluminescence. Furthermore, we demonstrate an ultrahigh-density array of identical single-photon emitters.Molecular emitters offer a promising solution for single-photon generation. Here, by exploiting electronic decoupling by an ultrathin dielectric spacer and emission enhancement by a resonant plasmonic nanocavity, the authors demonstrate electrically driven single-photon emission from a single molecule.

中文翻译:

来自孤立的单个分子的电驱动单光子发射。

电驱动分子发光体被认为是单光子源的有前途的候选者之一。然而,有待证明的是,尽管有荧光猝灭和技术挑战,电驱动的单光子发射的确可以由分离的单分子产生。在这里,我们报告了这种电驱动的单光子发射,它来自位于扫描隧道显微镜中精确控制的纳米腔内部的明确定义的单个分子。有效的淬灭抑制和纳米腔等离子体增强使我们能够实现强烈而稳定的单分子电致发光。二阶光子相关性测量揭示了明显的光子反聚束倾角,单光子纯度低至g (2)(0)= 0.09,明确证实了单分子电致发光的单光子发射性质。此外,我们演示了相同单光子发射器的超高密度阵列。分子发射器为单光子产生提供了有希望的解决方案。在这里,作者通过利用超薄介电间隔物进行电子去耦,并通过共振等离子体纳米腔增强了发射,证明了单个分子的电驱动单光子发射。
更新日期:2017-09-18
down
wechat
bug