当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Flexible supercapacitor electrodes based on real metal-like cellulose papers.
Nature Communications ( IF 14.7 ) Pub Date : 2017-09-14 , DOI: 10.1038/s41467-017-00550-3 Yongmin Ko , Minseong Kwon , Wan Ki Bae , Byeongyong Lee , Seung Woo Lee , Jinhan Cho
Nature Communications ( IF 14.7 ) Pub Date : 2017-09-14 , DOI: 10.1038/s41467-017-00550-3 Yongmin Ko , Minseong Kwon , Wan Ki Bae , Byeongyong Lee , Seung Woo Lee , Jinhan Cho
The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm-2 and 267.3 μWh cm-2, respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.
中文翻译:
基于真正的类金属纤维素纸的柔性超级电容器电极。
对于柔性超级电容器的开发,强烈需要将导电和电荷存储材料有效地植入到柔性框架中。在这里,我们通过使用称为配体介导的逐层组装的组装方法,将相邻金属和/或金属氧化物纳米颗粒之间的接触电阻降至最低,介绍具有出色储能性能的金属纤维素纸基超级电容器电极。这种方法可以将绝缘纸转换为具有大表面积的高度多孔的金属纸,该金属纸可以用作超级电容器电极的集电器和纳米颗粒储存器。而且,我们证明,金属纸上的金属和假电容纳米粒子的交替结构设计可以显着增加面积电容和倍率能力,而内部电阻显着降低。金属纸基超级电容器的最大功率和能量密度估计为15.1 mW cm分别为-2和267.3μWhcm -2,大大优于常规纸或纺织品型超级电容器的性能。通过金属纳米颗粒和有机小分子之间的配体介导的逐层组装,作者准备了用于超级电容器的金属纸电极具有高功率和高能量密度。该方法可以扩展到便携式/可穿戴电子设备的各种电极。
更新日期:2017-09-14
中文翻译:
基于真正的类金属纤维素纸的柔性超级电容器电极。
对于柔性超级电容器的开发,强烈需要将导电和电荷存储材料有效地植入到柔性框架中。在这里,我们通过使用称为配体介导的逐层组装的组装方法,将相邻金属和/或金属氧化物纳米颗粒之间的接触电阻降至最低,介绍具有出色储能性能的金属纤维素纸基超级电容器电极。这种方法可以将绝缘纸转换为具有大表面积的高度多孔的金属纸,该金属纸可以用作超级电容器电极的集电器和纳米颗粒储存器。而且,我们证明,金属纸上的金属和假电容纳米粒子的交替结构设计可以显着增加面积电容和倍率能力,而内部电阻显着降低。金属纸基超级电容器的最大功率和能量密度估计为15.1 mW cm分别为-2和267.3μWhcm -2,大大优于常规纸或纺织品型超级电容器的性能。通过金属纳米颗粒和有机小分子之间的配体介导的逐层组装,作者准备了用于超级电容器的金属纸电极具有高功率和高能量密度。该方法可以扩展到便携式/可穿戴电子设备的各种电极。