当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2017-09-12 00:00:00 , DOI: 10.1021/jacs.7b06640 Kaushik Dey 1, 2 , Manas Pal 1 , Kanhu Charan Rout 3 , Shebeeb Kunjattu H 3 , Anuja Das 4 , Rabibrata Mukherjee 4 , Ulhas K. Kharul 2, 3 , Rahul Banerjee 1, 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2017-09-12 00:00:00 , DOI: 10.1021/jacs.7b06640 Kaushik Dey 1, 2 , Manas Pal 1 , Kanhu Charan Rout 3 , Shebeeb Kunjattu H 3 , Anuja Das 4 , Rabibrata Mukherjee 4 , Ulhas K. Kharul 2, 3 , Rahul Banerjee 1, 2
Affiliation
Exponential interest in the field of covalent organic frameworks (COFs) stems from the direct correlation between their modular design principle and various interesting properties. However, existing synthetic approaches to realize this goal mainly result in insoluble and unprocessable powders, which severely restrict their widespread applicability. Therefore, developing a methodology for easy fabrication of these materials remains an alluring goal and a much desired objective. Herein, we have demonstrated a bottom-up interfacial crystallization strategy to fabricate these microcrystalline powders as large-scale thin films under ambient conditions. This unique design principle exploits liquid–liquid interface as a platform, allowing simultaneous control over crystallization and morphology of the framework structure. The thin films are grown without any support in free-standing form and can be transferred onto any desirable substrate. The porous (with Tp-Bpy showing highest SBET of 1 151 m2 g–1) and crystalline thin films, having high chemical as well as thermal stability, also hold the merit to tune the thickness as low as sub-100 nm. These nanostructured thin COF films demonstrate remarkable solvent-permeance and solute-rejection performance. A prominent instance is the Tp-Bpy thin film, which displays an unprecedented acetonitrile permeance of 339 L m–2 h–1 bar–1.
中文翻译:
界面结晶共价有机骨架薄膜的选择性分子分离
在共价有机框架(COF)领域中,人们的关注度很高,这要归功于其模块化设计原理与各种有趣的特性之间的直接关系。然而,现有的实现该目的的合成方法主要导致不溶和不可加工的粉末,这严重限制了其广泛的适用性。因此,开发一种易于制造这些材料的方法仍然是诱人的目标和非常期望的目标。在本文中,我们已经证明了一种自下而上的界面结晶策略,可以在环境条件下将这些微晶粉末制成大规模薄膜。这种独特的设计原理利用液-液界面作为平台,从而可以同时控制框架结构的结晶和形态。在没有任何支撑的情况下以独立形式生长薄膜,并且可以将其转移到任何所需的基底上。多孔(带Tp-Bpy的最高S BET为1 151 m 2 g –1),并且具有高化学稳定性和热稳定性的结晶薄膜也具有可将厚度调节至100 nm以下的优点。这些纳米结构的COF薄膜表现出显着的溶剂渗透性和溶质排斥性能。Tp-Bpy薄膜是一个著名的例子,它显示出前所未有的339 L m –2 h –1 bar –1的乙腈渗透率。
更新日期:2017-09-12
中文翻译:
界面结晶共价有机骨架薄膜的选择性分子分离
在共价有机框架(COF)领域中,人们的关注度很高,这要归功于其模块化设计原理与各种有趣的特性之间的直接关系。然而,现有的实现该目的的合成方法主要导致不溶和不可加工的粉末,这严重限制了其广泛的适用性。因此,开发一种易于制造这些材料的方法仍然是诱人的目标和非常期望的目标。在本文中,我们已经证明了一种自下而上的界面结晶策略,可以在环境条件下将这些微晶粉末制成大规模薄膜。这种独特的设计原理利用液-液界面作为平台,从而可以同时控制框架结构的结晶和形态。在没有任何支撑的情况下以独立形式生长薄膜,并且可以将其转移到任何所需的基底上。多孔(带Tp-Bpy的最高S BET为1 151 m 2 g –1),并且具有高化学稳定性和热稳定性的结晶薄膜也具有可将厚度调节至100 nm以下的优点。这些纳米结构的COF薄膜表现出显着的溶剂渗透性和溶质排斥性能。Tp-Bpy薄膜是一个著名的例子,它显示出前所未有的339 L m –2 h –1 bar –1的乙腈渗透率。