当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Smart H2O2-Responsive Drug Delivery System Made by Halloysite Nanotubes and Carbohydrate Polymers
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-09-12 00:00:00 , DOI: 10.1021/acsami.7b10867 Feng Liu 1 , Libin Bai 1 , Hailei Zhang 1 , Hongzan Song 1 , Liandong Hu 1 , Yonggang Wu 1 , Xinwu Ba 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-09-12 00:00:00 , DOI: 10.1021/acsami.7b10867 Feng Liu 1 , Libin Bai 1 , Hailei Zhang 1 , Hongzan Song 1 , Liandong Hu 1 , Yonggang Wu 1 , Xinwu Ba 1
Affiliation
A novel chemical hydrogel was facilely achieved by coupling 1,4-phenylenebisdiboronic acid modified halloysite nanotubes (HNTs-BO) with compressible starch. The modified halloysite nanotubes (HNTs) and prepared hydrogel were characterized by solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The linkage of B–C in the hydrogel can be degraded into B–OH and C–OH units in the presence of H2O2 and result in the degradation of the chemical hydrogel. Pentoxifylline was loaded into the lumen of the HNTs-BO, and then gave the pentoxifylline-loaded hydrogel. The drug release profile shows that it was no more than 7% dissolved when using phosphate buffer solution (PBS) as the release medium. Notably, a complete release (near 90%) can be achieved with the addition of H2O2 ([H2O2] = 1 × 10–4 M), suggesting a high H2O2 responsiveness of the as-formed hydrogel. The drug release results also show that the “initial burst release” can be effectively suppressed by loading pentoxifylline inside the lumen of the HNTs rather than embedding the drug in the hydrogel network. The drug-loaded hydrogel with H2O2-responsive release behavior may open up a broader application in the field of biomedicine.
中文翻译:
埃洛石纳米管和碳水化合物聚合物制成的Smart H 2 O 2-响应型药物输送系统
通过将1,4-亚苯基双二硼酸修饰的埃洛石纳米管(HNTs-BO)与可压缩淀粉偶联,可以轻松实现新型化学水凝胶。通过固态核磁共振(NMR),傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和透射电子显微镜(TEM)对改性的埃洛石纳米管(HNTs)和制备的水凝胶进行了表征。在H 2 O 2存在下,水凝胶中B–C的键合可以降解为B–OH和C–OH单元并导致化学水凝胶的降解。将己酮可可碱加载到HNTs-BO的管腔中,然后得到负载己可可可碱的水凝胶。药物释放曲线表明,使用磷酸盐缓冲溶液(PBS)作为释放介质时,其溶解度不超过7%。值得注意的是,添加H 2 O 2([H 2 O 2 ] = 1×10 –4 M)可以实现完全释放(接近90%),这表明H 2 O 2高形成的水凝胶的响应性。药物释放结果还表明,通过将己酮可可碱装载在HNT内腔中而不是将药物嵌入水凝胶网络中,可以有效地抑制“初始突释”。具有H 2 O 2响应释放行为的载有药物的水凝胶可能会在生物医学领域开辟更广泛的应用。
更新日期:2017-09-12
中文翻译:
埃洛石纳米管和碳水化合物聚合物制成的Smart H 2 O 2-响应型药物输送系统
通过将1,4-亚苯基双二硼酸修饰的埃洛石纳米管(HNTs-BO)与可压缩淀粉偶联,可以轻松实现新型化学水凝胶。通过固态核磁共振(NMR),傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和透射电子显微镜(TEM)对改性的埃洛石纳米管(HNTs)和制备的水凝胶进行了表征。在H 2 O 2存在下,水凝胶中B–C的键合可以降解为B–OH和C–OH单元并导致化学水凝胶的降解。将己酮可可碱加载到HNTs-BO的管腔中,然后得到负载己可可可碱的水凝胶。药物释放曲线表明,使用磷酸盐缓冲溶液(PBS)作为释放介质时,其溶解度不超过7%。值得注意的是,添加H 2 O 2([H 2 O 2 ] = 1×10 –4 M)可以实现完全释放(接近90%),这表明H 2 O 2高形成的水凝胶的响应性。药物释放结果还表明,通过将己酮可可碱装载在HNT内腔中而不是将药物嵌入水凝胶网络中,可以有效地抑制“初始突释”。具有H 2 O 2响应释放行为的载有药物的水凝胶可能会在生物医学领域开辟更广泛的应用。