当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intraligand Charge Transfer Sensitization on Self-Assembled Europium Tetrahedral Cage Leads to Dual-Selective Luminescent Sensing toward Anion and Cation
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2017-09-01 00:00:00 , DOI: 10.1021/jacs.7b05157
Cui-Lian Liu 1 , Rui-Ling Zhang 2, 3 , Chen-Sheng Lin 1 , Li-Peng Zhou 1 , Li-Xuan Cai 1 , Jin-Tao Kong 1 , Song-Qiu Yang 2 , Ke-Li Han 2 , Qing-Fu Sun 1
Affiliation  

Luminescent supramolecular lanthanide edifices have many potential applications in biology, environments, and materials science. However, it is still a big challenge to improve the luminescent performance of multinuclear lanthanide assemblies in contrast to their mononuclear counterparts. Herein, we demonstrate that combination of intraligand charge transfer (ILCT) sensitization and coordination-driven self-assembly gives birth to bright EuIII tetrahedral cages with a record emission quantum yield of 23.1%. The ILCT sensitization mechanism has been unambiguously confirmed by both time-dependent density functional theory calculation and femtosecond transient absorption studies. Meanwhile, dual-responsive sensing toward both anions and cations has been demonstrated making use of the ILCT transition on the ligand. Without introduction of additional recognition units, high sensitivity and selectivity are revealed for the cage in both turn-off luminescent sensing toward I and turn-on sensing toward Cu2+. This study offers important design principles for the future development of luminescent lanthanide molecular materials.

中文翻译:

自组装Euro四面体笼上的配体内电荷转移敏化导致对阴离子和阳离子的双选择发光传感。

发光的超分子镧系元素在生物学,环境和材料科学中具有许多潜在的应用。但是,与单核镧系元素相比,提高多核镧系元素的发光性能仍然是一个巨大的挑战。在这里,我们证明配体内电荷转移(ILCT)敏化和协调驱动的自组装的组合产生明亮的Eu III四面体笼,具有创纪录的23.1%的发射量子产率。ILCT敏化机理已被时变密度泛函理论计算和飞秒瞬态吸收研究明确证实。同时,已经证明利用配体上的ILCT跃迁对阴离子和阳离子都具有双重响应感测。而不引入额外的识别单位,高灵敏度和选择性,揭示用于在两个关断发光感测朝向我笼子-和开启朝向感测的Cu 2+。这项研究为发光镧系分子材料的未来发展提供了重要的设计原理。
更新日期:2017-09-04
down
wechat
bug