当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Novel Amorphous MoS2/MoO3/Nitrogen-Doped Carbon Composite with Excellent Electrochemical Performance for Lithium Ion Batteries and Sodium Ion Batteries
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2017-08-22 00:00:00 , DOI: 10.1021/acssuschemeng.7b01595
Kunjie Zhu 1 , Xiaofeng Wang 1 , Jun Liu 1 , Site Li 2 , Hao Wang 1 , Linyu Yang 1, 3 , Sailin Liu 1 , Tian Xie 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2017-08-22 00:00:00 , DOI: 10.1021/acssuschemeng.7b01595
Kunjie Zhu 1 , Xiaofeng Wang 1 , Jun Liu 1 , Site Li 2 , Hao Wang 1 , Linyu Yang 1, 3 , Sailin Liu 1 , Tian Xie 1
Affiliation
![]() |
A novel amorphous MoS2/MoO3/nitrogen-doped carbon composite has been successfully synthesized for the first time. The synthesis strategy only involves a facile reaction that partially sulfurizes organic–inorganic hybrid material Mo3O10 (C2H10N2) (named as MoOx/ethylenediamine) nanowire precursors at low temperature (300 °C). It is more interesting that such amorphous composites as lithium ion battery (LIB) and sodium ion battery (SIB) anode electrodes showed much better electrochemical properties than those of most previously reported molybdenum-based materials with crystal structure. For example, the amorphous composite electrode for LIBs can reach up to 1253.3 mA h g–1 at a current density of 100 mA g–1 after 50 cycles and still retain 887.5 mA h g–1 at 1000 mA g–1 after 350 cycles. Similarly, for SIBs, it also retains 538.7 mA h g–1 after 200 cycles at 300 mA g–1 and maintains 339.9 mA h g–1 at 1000 mA g–1 after 220 cycles, corresponding to a capacity retention of nearly 100%. In addition, the amorphous composite electrode exhibits superior rate performance for LIBs and SIBs. Such superior electrochemical performance may be attributed to the following: (1) The carbonaceous matrix can enhance the conductivity of the amorphous composite. (2) Heteroatom, such as N, doping within this unique compositional feature can increase the active ion absorption sites on the amorphous composite surface benefitting the insertion/extraction of lithium/sodium ions. (3) The hybrid nanomaterials could provide plenty of diffusion channels for ions during the insertion/extraction process. (4) The 1D chain structure reduces the transfer distance of lithium/sodium ions into/from the electrode.
中文翻译:
具有优异电化学性能的新型非晶态MoS 2 / MoO 3 /氮掺杂碳复合材料,用于锂离子电池和钠离子电池
首次成功合成了新型的非晶态MoS 2 / MoO 3 /氮掺杂碳复合材料。合成策略仅涉及一种易反应,该反应部分硫化有机-无机杂化材料Mo 3 O 10(C 2 H 10 N 2)(称为MoO x/乙二胺)纳米线前体在低温(300°C)下。更有趣的是,这种无定形复合材料,如锂离子电池(LIB)和钠离子电池(SIB)阳极电极,其电化学性能比以前报道的大多数具有晶体结构的钼基材料要好得多。例如,用于LIB的无定形复合电极在50个循环后,在100 mA g –1的电流密度下可以达到1253.3 mA hg –1,而在350个循环后,在1000 mA g –1时仍保持887.5 mA hg –1。同样,对于SIB,在300 mA g –1的200个循环后,它也保持538.7 mA hg –1,在1000 mA g的情况下保持339.9 mA hg –1220次循环后为–1,对应的容量保持率接近100%。此外,非晶复合电极对LIB和SIB表现出优异的倍率性能。这种优异的电化学性能可以归因于以下方面:(1)碳质基质可以增强非晶态复合材料的电导率。(2)在这种独特的组成特征中掺杂的杂原子(例如N)可以增加非晶态复合材料表面上的活性离子吸收位点,从而有利于锂/钠离子的插入/萃取。(3)杂化纳米材料在插入/提取过程中可以为离子提供大量的扩散通道。(4)一维链结构减少了锂/钠离子进出电极的距离。
更新日期:2017-08-23
中文翻译:

具有优异电化学性能的新型非晶态MoS 2 / MoO 3 /氮掺杂碳复合材料,用于锂离子电池和钠离子电池
首次成功合成了新型的非晶态MoS 2 / MoO 3 /氮掺杂碳复合材料。合成策略仅涉及一种易反应,该反应部分硫化有机-无机杂化材料Mo 3 O 10(C 2 H 10 N 2)(称为MoO x/乙二胺)纳米线前体在低温(300°C)下。更有趣的是,这种无定形复合材料,如锂离子电池(LIB)和钠离子电池(SIB)阳极电极,其电化学性能比以前报道的大多数具有晶体结构的钼基材料要好得多。例如,用于LIB的无定形复合电极在50个循环后,在100 mA g –1的电流密度下可以达到1253.3 mA hg –1,而在350个循环后,在1000 mA g –1时仍保持887.5 mA hg –1。同样,对于SIB,在300 mA g –1的200个循环后,它也保持538.7 mA hg –1,在1000 mA g的情况下保持339.9 mA hg –1220次循环后为–1,对应的容量保持率接近100%。此外,非晶复合电极对LIB和SIB表现出优异的倍率性能。这种优异的电化学性能可以归因于以下方面:(1)碳质基质可以增强非晶态复合材料的电导率。(2)在这种独特的组成特征中掺杂的杂原子(例如N)可以增加非晶态复合材料表面上的活性离子吸收位点,从而有利于锂/钠离子的插入/萃取。(3)杂化纳米材料在插入/提取过程中可以为离子提供大量的扩散通道。(4)一维链结构减少了锂/钠离子进出电极的距离。