当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Maximizing Biojet Fuel Production from Triglyceride: Importance of the Hydrocracking Catalyst and Separate Deoxygenation/Hydrocracking Steps
ACS Catalysis ( IF 11.3 ) Pub Date : 2017-08-21 00:00:00 , DOI: 10.1021/acscatal.7b01326 Myoung Yeob Kim 1 , Jae-Kon Kim 2 , Mi-Eun Lee 2 , Songhyun Lee 1 , Minkee Choi 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2017-08-21 00:00:00 , DOI: 10.1021/acscatal.7b01326 Myoung Yeob Kim 1 , Jae-Kon Kim 2 , Mi-Eun Lee 2 , Songhyun Lee 1 , Minkee Choi 1
Affiliation
Various parameters in the catalytic hydroconversion of triglycerides (palm oil) were carefully investigated for maximizing the production of biojet fuel. The results showed that the deoxygenation of triglyceride via hydrotreatment should be carried out in a separate reactor prior to the hydrocracking step (i.e., two-step reaction process). Otherwise, the CO generated during deoxygenation can poison the metal components in the metal/acid bifunctional catalysts (Pt/zeolites), which can cause significant imbalance between the metal and acid functions in hydrocracking. This leads to fast catalyst deactivation via coke formation, heavy formation of aromatics, and overcracking of hydrocarbons, resulting in the reduction of final biojet fuel yield. In the two-step process, the second hydrocracking step mainly determines the final biojet fuel yield, and thus, a rational design of the hydrocracking catalysts that can suppress overcracking is essential. The diffusion characteristics of the multibranched hydrocarbon (e.g., 2,2,4-trimethylpentane) in the hydrocracking catalysts could be correlated with the yields of the jet fuel-range C8–C16 hydrocarbons and the iso/n-paraffin ratios. The result indicates that the facile diffusion of multibranched isomers out of catalysts before excessive cracking is important for the suppression of the formation of light hydrocarbons (≤C7). Consequently, Pt supported on nanocrystalline large-pore BEA zeolite showed the largest biojet fuel yield with the highest iso-paraffin content. Under the optimized conditions, 55 wt % of biojet fuel with respect to palm oil was achieved after final distillation, which satisfied all the required fuel specifications.
中文翻译:
最大限度地利用甘油三酸酯生产生物喷气燃料:加氢裂化催化剂的重要性和单独的脱氧/加氢裂化步骤
认真研究了甘油三酸酯(棕榈油)催化加氢转化中的各种参数,以最大程度地提高生物喷气燃料的产量。结果表明,在加氢裂化步骤(即两步反应过程)之前,应通过加氢处理对甘油三酸酯进行脱氧。否则,在脱氧过程中产生的CO可能会毒化金属/酸性双功能催化剂(Pt /沸石)中的金属成分,这可能会导致加氢裂化中金属和酸功能之间的显着失衡。这导致通过焦炭形成,芳烃的大量形成和烃的过度裂化而使催化剂快速失活,从而导致最终生物喷射燃料收率的降低。在两步过程中,第二个加氢裂化步骤主要决定了最终生物喷射燃料的产量,因此,合理设计能够抑制过度裂化的加氢裂化催化剂是必不可少的。加氢裂化催化剂中多支链碳氢化合物(例如2,2,4-三甲基戊烷)的扩散特性可能与航程范围为C8-C16的碳氢化合物和iso / n-石蜡比率。结果表明,在过度裂解之前,多支链异构体容易从催化剂中扩散出来对于抑制轻烃(≤C7)的形成很重要。因此,负载在纳米晶大孔BEA沸石上的Pt表现出最大的生物喷射燃料收率和最高的异链烷烃含量。在优化的条件下,最终蒸馏后相对于棕榈油获得了55 wt%的生物喷气燃料,满足了所有要求的燃料规格。
更新日期:2017-08-22
中文翻译:
最大限度地利用甘油三酸酯生产生物喷气燃料:加氢裂化催化剂的重要性和单独的脱氧/加氢裂化步骤
认真研究了甘油三酸酯(棕榈油)催化加氢转化中的各种参数,以最大程度地提高生物喷气燃料的产量。结果表明,在加氢裂化步骤(即两步反应过程)之前,应通过加氢处理对甘油三酸酯进行脱氧。否则,在脱氧过程中产生的CO可能会毒化金属/酸性双功能催化剂(Pt /沸石)中的金属成分,这可能会导致加氢裂化中金属和酸功能之间的显着失衡。这导致通过焦炭形成,芳烃的大量形成和烃的过度裂化而使催化剂快速失活,从而导致最终生物喷射燃料收率的降低。在两步过程中,第二个加氢裂化步骤主要决定了最终生物喷射燃料的产量,因此,合理设计能够抑制过度裂化的加氢裂化催化剂是必不可少的。加氢裂化催化剂中多支链碳氢化合物(例如2,2,4-三甲基戊烷)的扩散特性可能与航程范围为C8-C16的碳氢化合物和iso / n-石蜡比率。结果表明,在过度裂解之前,多支链异构体容易从催化剂中扩散出来对于抑制轻烃(≤C7)的形成很重要。因此,负载在纳米晶大孔BEA沸石上的Pt表现出最大的生物喷射燃料收率和最高的异链烷烃含量。在优化的条件下,最终蒸馏后相对于棕榈油获得了55 wt%的生物喷气燃料,满足了所有要求的燃料规格。