当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solar Water Splitting by TiO2/CdS/Co–Pi Nanowire Array Photoanode Enhanced with Co–Pi as Hole Transfer Relay and CdS as Light Absorber
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2015-08-11 , DOI: 10.1002/adfm.201502461 Guanjie Ai 1 , Hongxing Li 1 , Shaopei Liu 1 , Rong Mo 1 , Jianxin Zhong 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2015-08-11 , DOI: 10.1002/adfm.201502461 Guanjie Ai 1 , Hongxing Li 1 , Shaopei Liu 1 , Rong Mo 1 , Jianxin Zhong 1
Affiliation
The cobalt phosphate water oxidation catalyst (Co–Pi WOC) stabilized, CdS sensitized TiO2 nanowire arrays for nonsacrificial solar water splitting are reported. In this TiO2/CdS/Co–Pi photoanode, the Co–Pi WOC acts as hole transfer relay to accelerate the surface water oxidation reaction, CdS serves as light absorber for wider solar spectra harvesting, and TiO2 matrix provides direct pathway for electron transport. This triple TiO2/CdS/Co–Pi hybrid photoanode exhibits much enhanced photocurrent density and negatively shifts in onset potential, resulting in 1.5 and 3.4 times improved photoconversion efficiency compared to the TiO2/CdS and TiO2 photoanode, respectively. More importantly, the TiO2/CdS/Co–Pi shows significantly improved photoelectrochemical stability compared to the TiO2/CdS electrode, with ≈72% of the initial photocurrent retained after 2 h irradiation. The reason for the promoted performance is discussed in detail based on electrochemical measurements. This work provides a new paradigm for designing 1D nanoframework/light absorber/WOC photoanode to simultaneously enhance light absorption, charge separation, and transport and surface water oxidation reaction for efficient and stable solar fuel production.
中文翻译:
TiO2 / CdS / Co-Pi纳米线阵列光电阳极分解太阳能电池,Co-Pi作为空穴传输中继,CdS作为光吸收剂
据报导,磷酸钴水氧化催化剂(Co-Pi WOC)稳定,CdS敏化的TiO 2纳米线阵列可用于非牺牲性太阳能水分解。在此TiO 2 / CdS / Co-Pi光电阳极中,Co-Pi WOC充当空穴传输中继以加速表面水的氧化反应,CdS充当光吸收剂,以收集更广泛的太阳光谱,而TiO 2基质为电子提供直接途径运输。这种三重TiO 2 / CdS / Co-Pi杂化光阳极显示出大大提高的光电流密度和负电位偏移,与TiO 2 / CdS和TiO 2相比,光转换效率提高了1.5倍和3.4倍分别为光电阳极。更重要的是,与TiO 2 / CdS电极相比,TiO 2 / CdS / Co-Pi显示出显着改善的光电化学稳定性,辐照2 h后保留了约72%的初始光电流。基于电化学测量详细讨论了提高性能的原因。这项工作为设计一维纳米框架/吸光剂/ WOC光电阳极提供了新的范例,以同时增强光吸收,电荷分离,传输和表面水氧化反应,从而高效,稳定地生产太阳能。
更新日期:2015-08-11
中文翻译:
TiO2 / CdS / Co-Pi纳米线阵列光电阳极分解太阳能电池,Co-Pi作为空穴传输中继,CdS作为光吸收剂
据报导,磷酸钴水氧化催化剂(Co-Pi WOC)稳定,CdS敏化的TiO 2纳米线阵列可用于非牺牲性太阳能水分解。在此TiO 2 / CdS / Co-Pi光电阳极中,Co-Pi WOC充当空穴传输中继以加速表面水的氧化反应,CdS充当光吸收剂,以收集更广泛的太阳光谱,而TiO 2基质为电子提供直接途径运输。这种三重TiO 2 / CdS / Co-Pi杂化光阳极显示出大大提高的光电流密度和负电位偏移,与TiO 2 / CdS和TiO 2相比,光转换效率提高了1.5倍和3.4倍分别为光电阳极。更重要的是,与TiO 2 / CdS电极相比,TiO 2 / CdS / Co-Pi显示出显着改善的光电化学稳定性,辐照2 h后保留了约72%的初始光电流。基于电化学测量详细讨论了提高性能的原因。这项工作为设计一维纳米框架/吸光剂/ WOC光电阳极提供了新的范例,以同时增强光吸收,电荷分离,传输和表面水氧化反应,从而高效,稳定地生产太阳能。