当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.
Lab on a Chip ( IF 6.1 ) Pub Date : 2005 Jun , DOI: 10.1039/b502225h
Kyu Sung Kim , Je-Kyun Park

This paper describes a novel microfluidic immunoassay utilizing binding of superparamagnetic nanoparticles to beads and deflection of these beads in a magnetic field as the signal for measuring the presence of analyte. The superparamagnetic 50 nm nanoparticles and fluorescent 1 microm polystyrene beads are immobilized with specific antibodies. When target analytes react with the polystyrene beads and superparamagnetic nanoparticles simultaneously, the superparamagnetic nanoparticles can be attached onto the microbeads by the antigen-antibody complex. In the poly(dimethylsiloxane)(PDMS) microfluidic channel, only the microbeads conjugated with superparamagnetic nanoparticles by analytes consequently move to the high gradient magnetic fields under the specific applied magnetic field. In this study, the magnetic force-based microfluidic immunoassay is successfully applied to detect the rabbit IgG and mouse IgG as model analytes. The lowest concentration of rabbit IgG and mouse IgG measured over the background is 244 pg mL(-1) and 15.6 ng mL(-1), respectively. The velocities of microbeads conjugated with superparamagnetic nanoparticles are demonstrated by magnetic field gradients in microfluidic channels and compared with the calculated magnetic field gradients. Moreover, dual analyte detection in a single reaction is also performed by the fluorescent encoded microbeads in the microfluidic device. Detection range and lower detection limit can be controlled by the microbeads concentration and the higher magnetic field gradient.

中文翻译:

在超流体通道中使用超顺磁性纳米粒子的基于磁力的多重免疫测定。

本文介绍了一种新型的微流体免疫测定方法,该方法利用超顺磁性纳米粒子与小珠的结合以及这些小珠在磁场中的偏转作为测量分析物存在的信号。50纳米超顺磁性纳米颗粒和1微米荧光聚苯乙烯珠固定有特异性抗体。当目标分析物同时与聚苯乙烯珠和超顺磁性纳米颗粒反应时,超顺磁性纳米颗粒可以通过抗原-抗体复合物附着到微珠上。在聚(二甲基硅氧烷)(PDMS)微流体通道中,只有被分析物与超顺磁性纳米颗粒共轭的微珠因此会在特定的施加磁场下移动到高梯度磁场。在这项研究中,基于磁力的微流体免疫分析法成功地用于检测作为模型分析物的兔IgG和小鼠IgG。在背景中测得的兔IgG和小鼠IgG的最低浓度分别为244 pg mL(-1)和15.6 ng mL(-1)。通过微流体通道中的磁场梯度证明了与超顺磁性纳米颗粒共轭的微珠的速度,并将其与计算出的磁场梯度进行了比较。而且,在单个反应中的双重分析物检测也通过微流体装置中的荧光编码的微珠来进行。检测范围和检测下限可以通过微珠浓度和较高的磁场梯度来控制。在背景中测得的兔IgG和小鼠IgG的最低浓度分别为244 pg mL(-1)和15.6 ng mL(-1)。通过微流体通道中的磁场梯度证明了与超顺磁性纳米颗粒共轭的微珠的速度,并将其与计算出的磁场梯度进行了比较。而且,在单个反应中的双重分析物检测也通过微流体装置中的荧光编码的微珠来进行。检测范围和检测下限可以通过微珠浓度和较高的磁场梯度来控制。在背景中测得的兔IgG和小鼠IgG的最低浓度分别为244 pg mL(-1)和15.6 ng mL(-1)。通过微流体通道中的磁场梯度证明了与超顺磁性纳米颗粒共轭的微珠的速度,并将其与计算出的磁场梯度进行了比较。而且,在单个反应中的双重分析物检测也通过微流体装置中的荧光编码的微珠来进行。检测范围和检测下限可以通过微珠浓度和较高的磁场梯度来控制。通过微流体通道中的磁场梯度证明了与超顺磁性纳米颗粒共轭的微珠的速度,并将其与计算出的磁场梯度进行了比较。而且,在单个反应中的双重分析物检测也通过微流体装置中的荧光编码微珠来进行。检测范围和检测下限可以通过微珠浓度和较高的磁场梯度来控制。通过微流体通道中的磁场梯度证明了与超顺磁性纳米颗粒共轭的微珠的速度,并将其与计算出的磁场梯度进行了比较。而且,在单个反应中的双重分析物检测也通过微流体装置中的荧光编码的微珠来进行。检测范围和检测下限可以通过微珠浓度和较高的磁场梯度来控制。
更新日期:2017-01-31
down
wechat
bug