当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Facile Synthesis of Different Morphologies of Cu2SnS3 for High-Performance Supercapacitors
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-07-31 00:00:00 , DOI: 10.1021/acsami.7b07190 Chao Wang 1 , Hanqing Tian 1 , Jing Jiang 1 , Ting Zhou 1 , Qing Zeng 1 , XinRui He 1 , Pei Huang 1 , Yan Yao 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-07-31 00:00:00 , DOI: 10.1021/acsami.7b07190 Chao Wang 1 , Hanqing Tian 1 , Jing Jiang 1 , Ting Zhou 1 , Qing Zeng 1 , XinRui He 1 , Pei Huang 1 , Yan Yao 2
Affiliation
Cu2SnS3 is considered as an emerging potential candidate for electrode materials due to considerable interlayer spaces and tunnels in its crystal structures and excellent conducting ability. Ternary Cu2SnS3 as anode in lithium ion batteries has already been reported, but it is rarely mentioned to be applied in supercapacitors which is considered to be a complementary energy storage device for lithium ion batteries. It is an effective method to improve the electrochemical performance of materials by adjusting the morphology and microstructure of materials. In present study, ternary nanosheet-assembled Cu2SnS3 microspheres (M-CTS) and nanoparticles-like Cu2SnS3 (N-CTS) are synthesized via a facile solvothermal route. The results suggest that Cu2SnS3 microspheres (M-CTS) exhibit better capacitive performance compared with Cu2SnS3 (N-CTS) nanoparticles, which means that morphology does have a significant effect on the electrochemical reaction. M-CTS presents excellent supercapacitor performances with the high specific capacity of about 406 C g–1 at a current density of 1 A g–1 and achieves a high energy density of 85.6 W h kg–1 and power density of 720 W kg–1. The remarkable electrochemical performance of Cu2SnS3 can be attributed to the large specific surface area, smaller average pore size, and improved electrical conductivity. Our research indicates that it is very suitable for large-scale production and has enormous potential in the practical application of high-performance supercapacitors.
中文翻译:
用于高性能超级电容器的不同形态的Cu 2 SnS 3的简便合成
Cu 2 SnS 3由于其晶体结构中大量的层间空间和隧道以及出色的导电能力而被视为电极材料的新兴电势候选者。已经报道了将三元Cu 2 SnS 3用作锂离子电池的阳极,但是很少提及将其用于超级电容器中,超级电容器被认为是锂离子电池的补充储能装置。通过调节材料的形貌和微观结构,是提高材料电化学性能的有效方法。在本研究中,三元纳米片组装的Cu 2 SnS 3微球(M-CTS)和类似纳米颗粒的Cu 2SnS 3(N-CTS)通过简便的溶剂热途径合成。结果表明,与Cu 2 SnS 3(N-CTS)纳米颗粒相比,Cu 2 SnS 3微球(M-CTS)表现出更好的电容性能,这意味着形态确实对电化学反应有重要影响。M-CTS具有出色的超级电容器性能,在1 A g –1的电流密度下具有约406 C g –1的高比容量,并具有85.6 W h kg –1的高能量密度和720 W kg –的功率密度– 1。Cu 2 SnS 3的卓越电化学性能可以归因于较大的比表面积,较小的平均孔径和改善的电导率。我们的研究表明,它非常适合大规模生产,并且在高性能超级电容器的实际应用中具有巨大的潜力。
更新日期:2017-07-31
中文翻译:
用于高性能超级电容器的不同形态的Cu 2 SnS 3的简便合成
Cu 2 SnS 3由于其晶体结构中大量的层间空间和隧道以及出色的导电能力而被视为电极材料的新兴电势候选者。已经报道了将三元Cu 2 SnS 3用作锂离子电池的阳极,但是很少提及将其用于超级电容器中,超级电容器被认为是锂离子电池的补充储能装置。通过调节材料的形貌和微观结构,是提高材料电化学性能的有效方法。在本研究中,三元纳米片组装的Cu 2 SnS 3微球(M-CTS)和类似纳米颗粒的Cu 2SnS 3(N-CTS)通过简便的溶剂热途径合成。结果表明,与Cu 2 SnS 3(N-CTS)纳米颗粒相比,Cu 2 SnS 3微球(M-CTS)表现出更好的电容性能,这意味着形态确实对电化学反应有重要影响。M-CTS具有出色的超级电容器性能,在1 A g –1的电流密度下具有约406 C g –1的高比容量,并具有85.6 W h kg –1的高能量密度和720 W kg –的功率密度– 1。Cu 2 SnS 3的卓越电化学性能可以归因于较大的比表面积,较小的平均孔径和改善的电导率。我们的研究表明,它非常适合大规模生产,并且在高性能超级电容器的实际应用中具有巨大的潜力。