Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water
Nature ( IF 50.5 ) Pub Date : 2002-08-01 , DOI: 10.1038/nature01009 R. D. Cortright , R. R. Davda , J. A. Dumesic
Nature ( IF 50.5 ) Pub Date : 2002-08-01 , DOI: 10.1038/nature01009 R. D. Cortright , R. R. Davda , J. A. Dumesic
Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose—which makes up the major energy reserves in plants and animals—to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.
中文翻译:
液态水中生物质衍生烃的催化重整制氢
对化石燃料储备枯竭和能源需求不断增加造成的污染的担忧使氢成为一种有吸引力的替代能源。氢气目前来自不可再生的天然气和石油,但原则上可以从生物质或水等可再生资源中产生。然而,从水中有效地制氢仍然很困难,而且从生物质中制氢的技术,例如糖的酶解、生物油的蒸汽重整和气化,都存在制氢率低和/或加工要求复杂的问题。在这里,我们证明了在使用铂基催化剂的单反应器水相重整过程中,可以在接近 500 K 的温度下从糖和醇中生产氢气。我们能够将构成植物和动物主要能量储备的葡萄糖转化为氢气和气态烷烃,其中氢气占产品的 50%。我们发现当我们使用比糖更还原的分子时,制氢的选择性会增加,乙二醇和甲醇几乎完全转化为氢气和二氧化碳。这些发现表明,催化水相重整可能被证明可用于从可再生生物质和生物质废物流中提取的碳水化合物中产生富氢燃料气。乙二醇和甲醇几乎完全转化为氢气和二氧化碳。这些发现表明,催化水相重整可能证明可用于从可再生生物质和生物质废物流中提取的碳水化合物中产生富氢燃料气。乙二醇和甲醇几乎完全转化为氢气和二氧化碳。这些发现表明,催化水相重整可能被证明可用于从可再生生物质和生物质废物流中提取的碳水化合物中产生富氢燃料气。
更新日期:2002-08-01
中文翻译:
液态水中生物质衍生烃的催化重整制氢
对化石燃料储备枯竭和能源需求不断增加造成的污染的担忧使氢成为一种有吸引力的替代能源。氢气目前来自不可再生的天然气和石油,但原则上可以从生物质或水等可再生资源中产生。然而,从水中有效地制氢仍然很困难,而且从生物质中制氢的技术,例如糖的酶解、生物油的蒸汽重整和气化,都存在制氢率低和/或加工要求复杂的问题。在这里,我们证明了在使用铂基催化剂的单反应器水相重整过程中,可以在接近 500 K 的温度下从糖和醇中生产氢气。我们能够将构成植物和动物主要能量储备的葡萄糖转化为氢气和气态烷烃,其中氢气占产品的 50%。我们发现当我们使用比糖更还原的分子时,制氢的选择性会增加,乙二醇和甲醇几乎完全转化为氢气和二氧化碳。这些发现表明,催化水相重整可能被证明可用于从可再生生物质和生物质废物流中提取的碳水化合物中产生富氢燃料气。乙二醇和甲醇几乎完全转化为氢气和二氧化碳。这些发现表明,催化水相重整可能证明可用于从可再生生物质和生物质废物流中提取的碳水化合物中产生富氢燃料气。乙二醇和甲醇几乎完全转化为氢气和二氧化碳。这些发现表明,催化水相重整可能被证明可用于从可再生生物质和生物质废物流中提取的碳水化合物中产生富氢燃料气。