当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2017-07-05 00:00:00 , DOI: 10.1021/acsenergylett.7b00465 Huadong Yuan 1 , Xianlang Chen 2 , Guangmin Zhou 3 , Wenkui Zhang 1 , Jianmin Luo 1 , Hui Huang 1 , Yongping Gan 1 , Chu Liang 1 , Yang Xia 1 , Jun Zhang 1 , Jianguo Wang 2 , Xinyong Tao 1
ACS Energy Letters ( IF 19.3 ) Pub Date : 2017-07-05 00:00:00 , DOI: 10.1021/acsenergylett.7b00465 Huadong Yuan 1 , Xianlang Chen 2 , Guangmin Zhou 3 , Wenkui Zhang 1 , Jianmin Luo 1 , Hui Huang 1 , Yongping Gan 1 , Chu Liang 1 , Yang Xia 1 , Jun Zhang 1 , Jianguo Wang 2 , Xinyong Tao 1
Affiliation
Considerable research efforts have been devoted to the lithium–sulfur battery due to its advantages such as high theoretical capacity, high energy density, and low cost. However, the shuttle effect and the irreversible deposition of Li2S result in severe capacity decay and low Coulombic efficiency. Herein, we discovered that the transition metal phosphides cannot only trap the soluble polysulfides but also effectively catalyze the decomposition of Li2S to improve the utilization of active materials. Compared with the cathodes without transition metal phosphides, the cathodes based on Ni2P, Co2P, and Fe2P all exhibit higher reversible capacity and improved cycling performance. The Ni2P-added electrode delivers capacities of 1165, 1024, 912, 870, and 812 mAh g–1 at 0.1, 0.2, 0.5, 1.0, and 2.0 C, respectively, and high capacity retention of 96% after 300 cycles at 0.2 C. Even with a high sulfur mass loading of 3.4 mg cm–2, the capacity retention remains 90.3% after 400 cycles at 0.5 C. Both density functional theory calculations and electrochemical tests reveal that the transition metal phosphides show higher adsorption energies and lower dissociation energies of Li2S than those of carbon materials.
中文翻译:
过渡金属磷化物纳米粒子对高稳定性锂硫电池有效活化Li 2 S
锂硫电池由于其诸如高理论容量,高能量密度和低成本等优点而进行了大量的研究工作。然而,穿梭效应和不可逆的Li 2 S沉积导致严重的容量衰减和低库仑效率。在此,我们发现过渡金属磷化物不仅可以捕集可溶性多硫化物,而且可以有效地催化Li 2 S的分解,从而提高活性物质的利用率。与没有过渡金属磷化物的阴极相比,基于Ni 2 P,Co 2 P和Fe 2 P的阴极均具有更高的可逆容量和改善的循环性能。镍2添加P的电极在0.1、0.2、0.5、1.0和2.0 C下的容量分别为1165、1024、912、870和812 mAh g –1,在0.2 C下进行300次循环后的容量保持率高达96%。即使以3.4 mg cm –2的高硫质量负载,在0.5 C下400次循环后,容量保持率仍为90.3%。密度泛函理论计算和电化学测试均表明,过渡金属磷化物显示出较高的吸附能和较低的离解能。 Li 2 S比那些碳材料。
更新日期:2017-07-05
中文翻译:
过渡金属磷化物纳米粒子对高稳定性锂硫电池有效活化Li 2 S
锂硫电池由于其诸如高理论容量,高能量密度和低成本等优点而进行了大量的研究工作。然而,穿梭效应和不可逆的Li 2 S沉积导致严重的容量衰减和低库仑效率。在此,我们发现过渡金属磷化物不仅可以捕集可溶性多硫化物,而且可以有效地催化Li 2 S的分解,从而提高活性物质的利用率。与没有过渡金属磷化物的阴极相比,基于Ni 2 P,Co 2 P和Fe 2 P的阴极均具有更高的可逆容量和改善的循环性能。镍2添加P的电极在0.1、0.2、0.5、1.0和2.0 C下的容量分别为1165、1024、912、870和812 mAh g –1,在0.2 C下进行300次循环后的容量保持率高达96%。即使以3.4 mg cm –2的高硫质量负载,在0.5 C下400次循环后,容量保持率仍为90.3%。密度泛函理论计算和电化学测试均表明,过渡金属磷化物显示出较高的吸附能和较低的离解能。 Li 2 S比那些碳材料。