Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On noise-resolution uncertainty in quantum field theory.
Scientific Reports ( IF 3.8 ) Pub Date : 2017-07-03 , DOI: 10.1038/s41598-017-04834-y
Timur E. Gureyev , Alexander Kozlov , Yakov I. Nesterets , David M. Paganin , Harry M. Quiney
Scientific Reports ( IF 3.8 ) Pub Date : 2017-07-03 , DOI: 10.1038/s41598-017-04834-y
Timur E. Gureyev , Alexander Kozlov , Yakov I. Nesterets , David M. Paganin , Harry M. Quiney
![]() |
An uncertainty inequality is presented that establishes a lower limit for the product of the variance of the time-averaged intensity of a mode of a quantized electromagnetic field and the degree of its spatial localization. The lower limit is determined by the vacuum fluctuations within the volume corresponding to the width of the mode. This result also leads to a generalized form of the Heisenberg uncertainty principle for boson fields in which the lower limit for the product of uncertainties in the spatial and momentum localization of a mode is equal to the product of Planck's constant and a dimensionless functional which reflects the joint signal-to-noise ratio of the position and momentum of vacuum fluctuations in the region of the phase space occupied by the mode. Experimental X-ray synchrotron measurements provide an initial verification of the proposed theory in the case of Poisson statistics.
中文翻译:
关于噪声分辨率不确定性的量子场论。
提出了不确定性不等式,该不等式为量化电磁场的模式的时间平均强度的方差及其空间定位程度的乘积建立了下限。下限由与模式宽度相对应的体积内的真空波动确定。该结果还导致了玻色子场的海森堡不确定性原理的广义形式,其中,模式的空间和动量局部化中的不确定性乘积的下限等于普朗克常数和无量纲泛函的乘积,该乘积反映了模式占据的相空间区域中真空波动的位置和动量的联合信噪比。
更新日期:2017-07-03
中文翻译:

关于噪声分辨率不确定性的量子场论。
提出了不确定性不等式,该不等式为量化电磁场的模式的时间平均强度的方差及其空间定位程度的乘积建立了下限。下限由与模式宽度相对应的体积内的真空波动确定。该结果还导致了玻色子场的海森堡不确定性原理的广义形式,其中,模式的空间和动量局部化中的不确定性乘积的下限等于普朗克常数和无量纲泛函的乘积,该乘积反映了模式占据的相空间区域中真空波动的位置和动量的联合信噪比。