当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rational Design of Spider Silk Materials Genetically Fused with an Enzyme
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2015-07-27 , DOI: 10.1002/adfm.201501833 Ronnie Jansson 1 , Christophe M. Courtin 2 , Mats Sandgren 3 , My Hedhammar 1, 4
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2015-07-27 , DOI: 10.1002/adfm.201501833 Ronnie Jansson 1 , Christophe M. Courtin 2 , Mats Sandgren 3 , My Hedhammar 1, 4
Affiliation
Enzyme immobilization is an attractive route for achieving catalytically functional surfaces suitable for both continuous and repeated use. Herein, genetic engineering is used to combine the catalytic ability of a xylanase with the self‐assembly properties of recombinant spider silk, realizing silk materials with enzymatic activity. Under near‐physiological conditions, soluble xylanase‐silk fusion proteins assembled into fibers displaying catalytic activity. Also, a xylanase‐silk protein variant with the silk part miniaturized to contain only the C‐terminal domain of the silk protein formed fibers with catalytic activity. The repertoire of xylanase‐silk formats is further extended to include 2D surface coatings and 3D foams, also being catalytically active, showing the versatile range of possible silk materials. The stability of the xylanase‐silk materials is explored, demonstrating the possibility of storage, reuse, and cleaning with ethanol. Interestingly, fibers can also be stored dried with substantial residual activity after rehydration. Moreover, a continuous enzymatic reaction using xylanase‐silk is demonstrated, making enzymatic batch reactions not the sole possible implementation. The proof‐of‐concept for recombinantly produced enzyme‐silk, herein shown with a xylanase, implies that also other enzymes can be used in similar setups. It is envisioned that the concept of enzyme‐silk can find its applicability in, for example, multienzyme reaction systems or biosensors.
中文翻译:
基因融合酶的蜘蛛丝材料的合理设计
酶固定是获得适合连续和重复使用的催化功能表面的有吸引力的途径。在这里,基因工程被用来将木聚糖酶的催化能力与重组蜘蛛丝的自组装特性相结合,从而实现具有酶促活性的丝材料。在接近生理条件下,可溶性木聚糖酶-丝融合蛋白组装成具有催化活性的纤维。此外,木聚糖酶丝蛋白变体的丝部分被缩小到仅包含丝蛋白的C端结构域,形成具有催化活性的纤维。木聚糖酶丝形式的库进一步扩展到包括2D表面涂层和3D泡沫,它们也具有催化活性,显示出可能的丝材料种类繁多。探究了木聚糖酶丝材料的稳定性,证明了使用乙醇进行储存,再利用和清洁的可能性。有趣的是,纤维在复水后也可以干燥保存,并具有相当大的残留活性。此外,还证明了使用木聚糖酶-丝的连续酶促反应,使得酶促间歇反应不是唯一可行的方法。重组生产的酶丝的概念证明(此处显示为木聚糖酶)表明,其他酶也可用于相似的设置。可以预见,酶丝的概念可以在例如多酶反应系统或生物传感器中找到其适用性。复水后,纤维也可以干燥保存,并具有相当大的残留活性。此外,还证明了使用木聚糖酶-丝的连续酶促反应,使得酶促间歇反应不是唯一可行的方法。重组产生的酶丝的概念证明(此处与木聚糖酶一起显示)表明,其他酶也可以用于类似的设置中。可以预见,酶丝的概念可以在例如多酶反应系统或生物传感器中找到其适用性。复水后,纤维也可以干燥保存,并具有相当大的残留活性。此外,还证明了使用木聚糖酶-丝的连续酶促反应,使得酶促间歇反应不是唯一可行的方法。重组生产的酶丝的概念证明(此处显示为木聚糖酶)表明,其他酶也可用于相似的设置。可以预见,酶丝的概念可以在例如多酶反应系统或生物传感器中找到其适用性。
更新日期:2015-07-27
中文翻译:
基因融合酶的蜘蛛丝材料的合理设计
酶固定是获得适合连续和重复使用的催化功能表面的有吸引力的途径。在这里,基因工程被用来将木聚糖酶的催化能力与重组蜘蛛丝的自组装特性相结合,从而实现具有酶促活性的丝材料。在接近生理条件下,可溶性木聚糖酶-丝融合蛋白组装成具有催化活性的纤维。此外,木聚糖酶丝蛋白变体的丝部分被缩小到仅包含丝蛋白的C端结构域,形成具有催化活性的纤维。木聚糖酶丝形式的库进一步扩展到包括2D表面涂层和3D泡沫,它们也具有催化活性,显示出可能的丝材料种类繁多。探究了木聚糖酶丝材料的稳定性,证明了使用乙醇进行储存,再利用和清洁的可能性。有趣的是,纤维在复水后也可以干燥保存,并具有相当大的残留活性。此外,还证明了使用木聚糖酶-丝的连续酶促反应,使得酶促间歇反应不是唯一可行的方法。重组生产的酶丝的概念证明(此处显示为木聚糖酶)表明,其他酶也可用于相似的设置。可以预见,酶丝的概念可以在例如多酶反应系统或生物传感器中找到其适用性。复水后,纤维也可以干燥保存,并具有相当大的残留活性。此外,还证明了使用木聚糖酶-丝的连续酶促反应,使得酶促间歇反应不是唯一可行的方法。重组产生的酶丝的概念证明(此处与木聚糖酶一起显示)表明,其他酶也可以用于类似的设置中。可以预见,酶丝的概念可以在例如多酶反应系统或生物传感器中找到其适用性。复水后,纤维也可以干燥保存,并具有相当大的残留活性。此外,还证明了使用木聚糖酶-丝的连续酶促反应,使得酶促间歇反应不是唯一可行的方法。重组生产的酶丝的概念证明(此处显示为木聚糖酶)表明,其他酶也可用于相似的设置。可以预见,酶丝的概念可以在例如多酶反应系统或生物传感器中找到其适用性。