当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distinguishing Oxygen Vacancy Electromigration and Conductive Filament Formation in TiO2 Resistance Switching Using Liquid Electrolyte Contacts
Nano Letters ( IF 9.6 ) Pub Date : 2017-06-26 00:00:00 , DOI: 10.1021/acs.nanolett.7b01460
Kechao Tang 1 , Andrew C. Meng 1 , Fei Hui 2 , Yuanyuan Shi 2 , Trevor Petach , Charles Hitzman , Ai Leen Koh , David Goldhaber-Gordon , Mario Lanza 2 , Paul C. McIntyre 1
Affiliation  

Resistance switching in TiO2 and many other transition metal oxide resistive random access memory materials is believed to involve the assembly and breaking of interacting oxygen vacancy filaments via the combined effects of field-driven ion migration and local electronic conduction leading to Joule heating. These complex processes are very difficult to study directly in part because the filaments form between metallic electrode layers that block their observation by most characterization techniques. By replacing the top electrode layer in a metal–insulator–metal memory structure with easily removable liquid electrolytes, either an ionic liquid (IL) with high resistance contact or a conductive aqueous electrolyte, we probe field-driven oxygen vacancy redistribution in TiO2 thin films under conditions that either suppress or promote Joule heating. Oxygen isotope exchange experiments indicate that exchange of oxygen ions between TiO2 and the IL is facile at room temperature. Oxygen loss significantly increases the conductivity of the TiO2 films; however, filament formation is not observed after IL gating alone. Replacing the IL with a more conductive aqueous electrolyte contact and biasing does produce electroformed conductive filaments, consistent with a requirement for Joule heating to enhance the vacancy concentration and mobility at specific locations in the film.

中文翻译:

利用液体电解质触点区分TiO 2电阻转换中的氧空位电迁移和导电丝形成

据信,TiO 2和许多其他过渡金属氧化物电阻随机存取存储材料中的电阻转换涉及通过场驱动离子迁移和导致焦耳热的局部电子传导的组合效应,来相互作用的氧空位细丝的组装和断裂。这些复杂的过程很难直接进行研究,部分原因是细丝在金属电极层之间形成,从而阻碍了大多数表征技术的观察。通过用易于去除的液体电解质(具有高电阻接触的离子液体(IL)或导电性水性电解质)替换金属-绝缘体-金属存储结构中的顶部电极层,我们可以探查TiO 2中场驱动的氧空位的重新分布在抑制或促进焦耳热的条件下形成薄膜。氧同位素交换实验表明,在室温下TiO 2和IL之间的氧离子交换很容易。氧损失显着增加了TiO 2薄膜的电导率;但是,单独进行IL门控后未观察到长丝形成。用更具导电性的水性电解质接触和偏置代替IL确实会产生电铸导电丝,这与焦耳加热的要求相符,以提高膜中特定位置的空位浓度和迁移率。
更新日期:2017-06-28
down
wechat
bug