当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2017-06-23 00:00:00 , DOI: 10.1021/acs.est.7b00689 Yong-Guan Zhu 1, 2 , Xi-Mei Xue 1 , Andreas Kappler 3 , Barry P Rosen 4 , Andrew A Meharg 5
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2017-06-23 00:00:00 , DOI: 10.1021/acs.est.7b00689 Yong-Guan Zhu 1, 2 , Xi-Mei Xue 1 , Andreas Kappler 3 , Barry P Rosen 4 , Andrew A Meharg 5
Affiliation
The biotransformation of arsenic is highly relevant to the arsenic biogeochemical cycle. Identification of the molecular details of microbial pathways of arsenic biotransformation coupled with analyses of microbial communities by meta-omics can provide insights into detailed aspects of the complexities of this biocycle. Arsenic transformations couple to other biogeochemical cycles, and to the fate of both nutrients and other toxic environmental contaminants. Microbial redox metabolism of iron, carbon, sulfur, and nitrogen affects the redox and bioavailability of arsenic species. In this critical review we illustrate the biogeochemical processes and genes involved in arsenic biotransformations. We discuss how current and future metagenomic-, metatranscriptomic-, metaproteomic-, and metabolomic-based methods will help to decipher individual microbial arsenic transformation processes, and their connections to other biogeochemical cycle. These insights will allow future use of microbial metabolic capabilities for new biotechnological solutions to environmental problems. To understand the complex nature of inorganic and organic arsenic species and the fate of environmental arsenic will require integrating systematic approaches with biogeochemical modeling. Finally, from the lessons learned from these studies of arsenic biogeochemistry, we will be able to predict how the environment changes arsenic, and, in response, how arsenic biotransformations change the environment.
中文翻译:
将基因与微生物生物地球化学循环联系起来:砷的教训
砷的生物转化与砷的生物地球化学循环高度相关。鉴定砷生物转化的微生物途径的分子细节,再结合通过组基因组学对微生物群落的分析,可以提供对该生物周期复杂性的详细方面的见识。砷的转化与其他生物地球化学循环以及营养物和其他有毒环境污染物的命运有关。铁,碳,硫和氮的微生物氧化还原代谢会影响砷物种的氧化还原和生物利用度。在这篇重要的综述中,我们说明了砷地球化学转化涉及的生物地球化学过程和基因。我们讨论了当前和未来的宏基因组学,元转录组学,元蛋白质组学,基于代谢组学的方法将有助于破译单个微生物的砷转化过程,以及它们与其他生物地球化学循环的联系。这些见解将使微生物代谢能力可用于将来解决环境问题的新生物技术解决方案。要了解无机和有机砷物种的复杂性质以及环境砷的命运,需要将系统方法与生物地球化学建模相结合。最后,从这些关于砷生物地球化学研究的经验教训中,我们将能够预测环境如何改变砷,以及相应地,砷生物转化如何改变环境。这些见解将使微生物代谢能力可用于将来解决环境问题的新生物技术解决方案。要了解无机和有机砷物种的复杂性质以及环境砷的命运,需要将系统方法与生物地球化学建模相结合。最后,从这些关于砷生物地球化学研究的经验教训中,我们将能够预测环境如何改变砷,以及相应地,砷生物转化如何改变环境。这些见解将使微生物代谢能力可用于将来解决环境问题的新生物技术解决方案。要了解无机和有机砷物种的复杂性质以及环境砷的命运,需要将系统方法与生物地球化学建模相结合。最后,从这些关于砷生物地球化学研究的经验教训中,我们将能够预测环境如何改变砷,以及相应地,砷生物转化如何改变环境。
更新日期:2017-06-28
中文翻译:
将基因与微生物生物地球化学循环联系起来:砷的教训
砷的生物转化与砷的生物地球化学循环高度相关。鉴定砷生物转化的微生物途径的分子细节,再结合通过组基因组学对微生物群落的分析,可以提供对该生物周期复杂性的详细方面的见识。砷的转化与其他生物地球化学循环以及营养物和其他有毒环境污染物的命运有关。铁,碳,硫和氮的微生物氧化还原代谢会影响砷物种的氧化还原和生物利用度。在这篇重要的综述中,我们说明了砷地球化学转化涉及的生物地球化学过程和基因。我们讨论了当前和未来的宏基因组学,元转录组学,元蛋白质组学,基于代谢组学的方法将有助于破译单个微生物的砷转化过程,以及它们与其他生物地球化学循环的联系。这些见解将使微生物代谢能力可用于将来解决环境问题的新生物技术解决方案。要了解无机和有机砷物种的复杂性质以及环境砷的命运,需要将系统方法与生物地球化学建模相结合。最后,从这些关于砷生物地球化学研究的经验教训中,我们将能够预测环境如何改变砷,以及相应地,砷生物转化如何改变环境。这些见解将使微生物代谢能力可用于将来解决环境问题的新生物技术解决方案。要了解无机和有机砷物种的复杂性质以及环境砷的命运,需要将系统方法与生物地球化学建模相结合。最后,从这些关于砷生物地球化学研究的经验教训中,我们将能够预测环境如何改变砷,以及相应地,砷生物转化如何改变环境。这些见解将使微生物代谢能力可用于将来解决环境问题的新生物技术解决方案。要了解无机和有机砷物种的复杂性质以及环境砷的命运,需要将系统方法与生物地球化学建模相结合。最后,从这些关于砷生物地球化学研究的经验教训中,我们将能够预测环境如何改变砷,以及相应地,砷生物转化如何改变环境。