当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Symmetrization of the Crystal Lattice of MAPbI3 Boosts the Performance and Stability of Metal–Perovskite Photodiodes
Advanced Materials ( IF 27.4 ) Pub Date : 2017-06-12 , DOI: 10.1002/adma.201701656 Zhifang Shi 1 , Yi Zhang 1 , Chao Cui 1 , Binghan Li 1 , Wenjia Zhou 1 , Zhijun Ning 1 , Qixi Mi 1
Advanced Materials ( IF 27.4 ) Pub Date : 2017-06-12 , DOI: 10.1002/adma.201701656 Zhifang Shi 1 , Yi Zhang 1 , Chao Cui 1 , Binghan Li 1 , Wenjia Zhou 1 , Zhijun Ning 1 , Qixi Mi 1
Affiliation
Semiconducting lead triiodide perovskites (APbI3) have shown remarkable performance in applications including photovoltaics and electroluminescence. Despite many theoretical possibilities for A+ in APbI3, the current experimental knowledge is largely limited to two of these materials: methylammonium (MA+) and formamidinium (FA+) lead triiodides, neither of which adopts the ideal, cubic perovskite structure at room temperature. Here, a volume‐based criterion is proposed for cubic APbI3 to be stable, and two perovskite materials MA1−xEAxPbI3 (MEPI, EA+ = ethylammonium) and MA1−yDMAyPbI3 (MDPI, DMA+ = dimethylammonium) are introduced. Powder and single‐crystal X‐ray diffraction (XRD) results reveal that MEPI and MDPI are solid solutions possessing the cubic perovskite structure, and the EA+ and DMA+ cations play similar roles in the symmetrization of the crystal lattice of MAPbI3. Single crystals of MEPI and MDPI are grown and made into plates of a range of thicknesses, and then into metal–perovskite photodiodes. These devices exhibit tripled diffusion lengths and about tenfold enhancement in stability against moisture, both relative to the current benchmark MAPbI3. In this study, the systematic approach to materials design and device fabrication greatly expands the candidate pool of perovskite semiconductors, and paves the way for high‐performance, single‐crystal perovskite devices including solar cells and light emitters.
中文翻译:
MAPbI3晶格的对称化提高了金属钙钛矿光电二极管的性能和稳定性。
半导体三碘化钙钛矿(A PbI 3)在包括光伏和电致发光的应用中已显示出卓越的性能。尽管对于许多理论上的可能性甲+在甲碘化铅3,目前的实验知识是在很大程度上限于两个这些材料:甲基铵(MA +)和甲脒(FA +均未)铅三碘化物,采用理想的,立方钙钛矿结构在室内温度。在这里,提出了基于体积的准则,以使立方A PbI 3稳定,并且使用两种钙钛矿材料MA 1− x EA x碘化铅3(MEPI,EA + =乙基铵)和MA 1- ÿ DMA Ý碘化铅3(MDPI,DMA + =二甲基铵)引入。粉末和单晶X射线衍射(XRD)结果表明,MEPI和MDPI是具有立方钙钛矿结构的固溶体,并且EA +和DMA +阳离子在MAPbI 3晶格对称化中起相似的作用。MEPI和MDPI的单晶生长并制成各种厚度的板,然后制成金属钙钛矿光电二极管。这些器件相对于目前的基准MAPbI 3而言,具有三倍的扩散长度,并且对水分的稳定性提高了约十倍。在这项研究中,系统的材料设计和器件制造方法极大地扩展了钙钛矿半导体的候选库,并为高性能单晶钙钛矿器件(包括太阳能电池和发光器)铺平了道路。
更新日期:2017-06-12
中文翻译:
MAPbI3晶格的对称化提高了金属钙钛矿光电二极管的性能和稳定性。
半导体三碘化钙钛矿(A PbI 3)在包括光伏和电致发光的应用中已显示出卓越的性能。尽管对于许多理论上的可能性甲+在甲碘化铅3,目前的实验知识是在很大程度上限于两个这些材料:甲基铵(MA +)和甲脒(FA +均未)铅三碘化物,采用理想的,立方钙钛矿结构在室内温度。在这里,提出了基于体积的准则,以使立方A PbI 3稳定,并且使用两种钙钛矿材料MA 1− x EA x碘化铅3(MEPI,EA + =乙基铵)和MA 1- ÿ DMA Ý碘化铅3(MDPI,DMA + =二甲基铵)引入。粉末和单晶X射线衍射(XRD)结果表明,MEPI和MDPI是具有立方钙钛矿结构的固溶体,并且EA +和DMA +阳离子在MAPbI 3晶格对称化中起相似的作用。MEPI和MDPI的单晶生长并制成各种厚度的板,然后制成金属钙钛矿光电二极管。这些器件相对于目前的基准MAPbI 3而言,具有三倍的扩散长度,并且对水分的稳定性提高了约十倍。在这项研究中,系统的材料设计和器件制造方法极大地扩展了钙钛矿半导体的候选库,并为高性能单晶钙钛矿器件(包括太阳能电池和发光器)铺平了道路。