当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microtopography-Guided Conductive Patterns of Liquid-Driven Graphene Nanoplatelet Networks for Stretchable and Skin-Conformal Sensor Array
Advanced Materials ( IF 27.4 ) Pub Date : 2017-03-29 06:21:08 , DOI: 10.1002/adma.201606453 Youngjin Park 1 , Jongwon Shim 2 , Suyeon Jeong 3 , Gi-Ra Yi 1 , Heeyeop Chae 1 , Jong Wook Bae 1 , Sang Ouk Kim 4 , Changhyun Pang 1, 3, 5
Advanced Materials ( IF 27.4 ) Pub Date : 2017-03-29 06:21:08 , DOI: 10.1002/adma.201606453 Youngjin Park 1 , Jongwon Shim 2 , Suyeon Jeong 3 , Gi-Ra Yi 1 , Heeyeop Chae 1 , Jong Wook Bae 1 , Sang Ouk Kim 4 , Changhyun Pang 1, 3, 5
Affiliation
Flexible thin-film sensors have been developed for practical uses in invasive or noninvasive cost-effective healthcare devices, which requires high sensitivity, stretchability, biocompatibility, skin/organ-conformity, and often transparency. Graphene nanoplatelets can be spontaneously assembled into transparent and conductive ultrathin coatings on micropatterned surfaces or planar substrates via a convective Marangoni force in a highly controlled manner. Based on this versatile graphene assembled film preparation, a thin, stretchable and skin-conformal sensor array (144 pixels) is fabricated having microtopography-guided, graphene-based, conductive patterns embedded without any complicated processes. The electrically controlled sensor array for mapping spatial distributions (144 pixels) shows high sensitivity (maximum gauge factor ≈1697), skin-like stretchability (<48%), high cyclic stability or durability (over 105 cycles), and the signal amplification (≈5.25 times) via structure-assisted intimate-contacts between the device and rough skin. Furthermore, given the thin-film programmable architecture and mechanical deformability of the sensor, a human skin-conformal sensor is demonstrated with a wireless transmitter for expeditious diagnosis of cardiovascular and cardiac illnesses, which is capable of monitoring various amplified pulse-waveforms and evolved into a mechanical/thermal-sensitive electric rubber-balloon and an electronic blood-vessel. The microtopography-guided and self-assembled conductive patterns offer highly promising methodology and tool for next-generation biomedical devices and various flexible/stretchable (wearable) devices.
中文翻译:
液体驱动的石墨烯纳米血小板网络的可伸缩和皮肤保形传感器阵列的微形貌指导的导电模式。
柔性薄膜传感器已经被开发用于有创或无创的高性价比医疗设备中,需要高灵敏度,可拉伸性,生物相容性,皮肤/器官整合性,并且通常需要透明性。石墨烯纳米片可以通过对流Marangoni力以高度受控的方式自发组装到微图案化表面或平面基板上的透明且导电的超薄涂层中。基于这种通用的石墨烯组装膜制备方法,可以制造出薄的,可拉伸的,与皮肤共形的传感器阵列(144像素),该传感器阵列嵌入了微形貌引导的基于石墨烯的导电图案,而无需进行任何复杂的处理。用于映射空间分布(144个像素)的电控传感器阵列显示出高灵敏度(最大标距因数≈1697),5个循环),并通过设备与粗糙皮肤之间的结构辅助紧密接触来放大信号(≈5.25倍)。此外,考虑到传感器的薄膜可编程架构和机械可变形性,演示了一种人体皮肤适形传感器和无线发射器,可以快速诊断心血管和心脏疾病,该无线发射器能够监视各种放大的脉冲波形,并逐渐演变为机械/热敏电动橡皮气球和电子血管。微观形貌引导和自组装的导电图案为下一代生物医学设备和各种柔性/可拉伸(可穿戴)设备提供了非常有前途的方法和工具。
更新日期:2017-06-02
中文翻译:
液体驱动的石墨烯纳米血小板网络的可伸缩和皮肤保形传感器阵列的微形貌指导的导电模式。
柔性薄膜传感器已经被开发用于有创或无创的高性价比医疗设备中,需要高灵敏度,可拉伸性,生物相容性,皮肤/器官整合性,并且通常需要透明性。石墨烯纳米片可以通过对流Marangoni力以高度受控的方式自发组装到微图案化表面或平面基板上的透明且导电的超薄涂层中。基于这种通用的石墨烯组装膜制备方法,可以制造出薄的,可拉伸的,与皮肤共形的传感器阵列(144像素),该传感器阵列嵌入了微形貌引导的基于石墨烯的导电图案,而无需进行任何复杂的处理。用于映射空间分布(144个像素)的电控传感器阵列显示出高灵敏度(最大标距因数≈1697),5个循环),并通过设备与粗糙皮肤之间的结构辅助紧密接触来放大信号(≈5.25倍)。此外,考虑到传感器的薄膜可编程架构和机械可变形性,演示了一种人体皮肤适形传感器和无线发射器,可以快速诊断心血管和心脏疾病,该无线发射器能够监视各种放大的脉冲波形,并逐渐演变为机械/热敏电动橡皮气球和电子血管。微观形貌引导和自组装的导电图案为下一代生物医学设备和各种柔性/可拉伸(可穿戴)设备提供了非常有前途的方法和工具。