当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and Theoretical Investigations of Surface-Assisted Graphene Nanoribbon Synthesis Featuring Carbon–Fluorine Bond Cleavage
ACS Nano ( IF 15.8 ) Pub Date : 2017-05-19 00:00:00 , DOI: 10.1021/acsnano.7b02316
Hironobu Hayashi 1 , Junichi Yamaguchi 2 , Hideyuki Jippo 2 , Ryunosuke Hayashi 1 , Naoki Aratani 1 , Mari Ohfuchi 2 , Shintaro Sato 2 , Hiroko Yamada 1
Affiliation  

Edge-fluorinated graphene nanoribbons are predicted to exhibit attractive structural and electronic properties, which, however, still need to be demonstrated experimentally. Hence, to provide further experimental insights, an anthracene trimer comprising a partially fluorinated central unit is explored as a precursor molecule, with scanning tunneling microscopy and X-ray photoelectron spectroscopy analyses, indicating the formation of partially edge-fluorinated polyanthrylenes via on-surface reactions after annealing at 350 °C on Au(111) under ultrahigh-vacuum conditions. Further annealing at 400 °C leads to the cyclodehydrogenation of partially edge-fluorinated polyanthrylenes to form graphene nanoribbons, resulting in carbon–fluorine bond cleavage despite its high dissociation energy. Extensive theoretical calculations reveal a defluorination-based reaction mechanism, showing that a critical intermediate structure, obtained as a result of H atom migration to the terminal carbon of a fluorinated anthracene unit in polyanthrylene, plays a crucial role in significantly lowering the activation energy of carbon–fluorine bond dissociation. These results suggest the importance of transient structures in intermediate states for synthesizing edge-fluorinated graphene nanoribbons.

中文翻译:

具有碳-氟键断裂的表面辅助石墨烯纳米带合成的实验和理论研究

边缘氟化石墨烯纳米带预计会展现出诱人的结构和电子性能,但是,仍然需要通过实验证明。因此,为了提供进一步的实验见解,通过扫描隧道显微镜和X射线光电子能谱分析,探索了包含部分氟化的中心单元的蒽三聚体作为前体分子,表明通过超高真空条件下,在350°C的Au(111)上退火后的表面反应。在400°C下进一步退火会导致部分边缘氟化的聚蒽发生环脱氢反应,形成石墨烯纳米带,尽管其解离能很高,但仍会导致碳-氟键断裂。大量的理论计算揭示了基于脱氟的反应机理,表明由于H原子迁移到聚蒽中氟化蒽单元的末端碳上而获得的关键中间结构在显着降低碳的活化能方面起着至关重要的作用。 –氟键解离。这些结果表明,中间态的瞬态结构对于合成边缘氟化石墨烯纳米带的重要性。
更新日期:2017-05-27
down
wechat
bug